Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bliznakov, Stoyan

  • Google
  • 3
  • 8
  • 17

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2014Electrochemical Atomic-level Controlled Syntheses of Electrocatalysts for the Oxygen Reduction Reaction7citations
  • 2011Electrodeposition of Pd nanowires and nanorods on carbon nanoparticles7citations
  • 2009Understanding, Controlling and Minimizing the Voiding, Sporadically Occurring in Solder Joints with Electroplated Copper3citations

Places of action

Chart of shared publication
Adzic, Radoslav
2 / 4 shared
Sutter, Eli
1 / 2 shared
Borgesen, Peter
1 / 1 shared
Cotts, Eric
1 / 1 shared
Dimitrov, Nikolay
1 / 1 shared
Yin, Liang
1 / 6 shared
Wafula, Fred
1 / 1 shared
Liu, Yihua
1 / 1 shared
Chart of publication period
2014
2011
2009

Co-Authors (by relevance)

  • Adzic, Radoslav
  • Sutter, Eli
  • Borgesen, Peter
  • Cotts, Eric
  • Dimitrov, Nikolay
  • Yin, Liang
  • Wafula, Fred
  • Liu, Yihua
OrganizationsLocationPeople

booksection

Electrochemical Atomic-level Controlled Syntheses of Electrocatalysts for the Oxygen Reduction Reaction

  • Adzic, Radoslav
  • Bliznakov, Stoyan
Abstract

<jats:p>It is becoming apparent that the electrocatalysts consisting of a platinum (Pt) monolayer (ML) shell on a metal, or alloy nanoparticle cores are one of the most promising classes of fuel cell catalysts offering ultra-low Pt content, complete Pt utilization, very high activity and excellent performance stability. In this chapter, the electrochemical strategies for depositing a Pt ML-shell on various nanostructured cores are discussed. The advantages of the electrodeposition techniques over the conventional chemical methods for synthesis of electrocatalysts for the oxygen reduction reaction are described. Illustrations include the electrodeposition of Pt ML on mono- and bi-metallic (Pd, PdAu, PdIr, NiW) nanostructures on functionalized carbons that creates highly efficient cathode electrocatalysts for proton exchange membrane fuel cells. These features, and a simple scale-up of this syntheses, make the electrodeposition strategies a viable way of solving the remaining obstacles hindering the fuel cell commercialization.</jats:p>

Topics
  • nanoparticle
  • impedance spectroscopy
  • Carbon
  • Oxygen
  • Platinum
  • electrodeposition