Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Salmi, Tapio

  • Google
  • 1
  • 3
  • 6

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2016Alumina ceramic foams as catalyst supports6citations

Places of action

Chart of shared publication
Hupa, Leena
1 / 90 shared
Behravesh, Erfan
1 / 2 shared
Murzin, Dmitry Yu
1 / 14 shared
Chart of publication period
2016

Co-Authors (by relevance)

  • Hupa, Leena
  • Behravesh, Erfan
  • Murzin, Dmitry Yu
OrganizationsLocationPeople

booksection

Alumina ceramic foams as catalyst supports

  • Hupa, Leena
  • Behravesh, Erfan
  • Salmi, Tapio
  • Murzin, Dmitry Yu
Abstract

Ceramic foams have a wide range of potential applications in biomedicine, thermal insulation, filtration of molten metal alloys, adsorption of environmental pollutants, catalyst supports, etc. Since the physical properties of the foams do not fully meet the requirements in some applications, improvement of conventional fabrication methods or totally new techniques are of interest. Herein, three main methods of manufacturing ceramic foams are introduced with the main emphasize on the replica technique. Furthermore, different techniques for improving structural properties of ceramic foams are reviewed. The focus of this review is on fabrication of macro-porous alumina foams with high interconnected porosity. In addition, experimental data for manufacturing of ceramic foams via the replica technique are presented along with literature surveys. Slurries consisted of alumina powder mixed in aqueous solutions of polyvinyl alcohol (PVA) and magnesia and titania as sintering aids. The foams were produced by tuning different processing parameters to give properties suited for catalyst supports. These parameters included pore size of the polyurethane (PU) foam used as a template, parameters in the PU foam pretreatment, particle size of alumina powder in the slurry, slurry loading and drying of the green alumina coated PU foam. Finally, the key factors for optimizing ceramic foams in terms of mechanical strength and interconnectivity are introduced together with an outlook for future advances in ceramic foams as catalyst supports.

Topics
  • porous
  • impedance spectroscopy
  • pore
  • strength
  • porosity
  • ceramic
  • alcohol
  • drying
  • sintering