People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Niemi, Tapio
Tampere University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2024Tailoring the Surface Properties of ZnO Nanowires by ALD Deposition
- 2020Hematite Surface Modification toward Efficient Sunlight-Driven Water Splitting Activity : The Role of Gold Nanoparticle Additioncitations
- 2020Hematite Surface Modification toward Efficient Sunlight-Driven Water Splitting Activitycitations
- 2019Automated solvent vapor annealing with nanometer scale control of film swelling for block copolymer thin filmscitations
- 2019Automated solvent vapor annealing with nanometer scale control of film swelling for block copolymer thin filmscitations
- 2017Structured metal/polymer back reflectors for III-V solar cells
- 2017Effect of ZnO Addition and of Alpha Particle Irradiation on Various Properties of Er3+, Yb3+ Doped Phosphate Glassescitations
- 2016Fabrication of Ion-Shaped Anisotropic Nanoparticles and their Orientational Imaging by Second-Harmonic Generation Microscopycitations
- 2005Optimization and applications of planar silicon-based photonic crystal devices
- 2005Optimization and applications of planar silicon-based photonic crystal devices
Places of action
Organizations | Location | People |
---|
article
Fabrication of Ion-Shaped Anisotropic Nanoparticles and their Orientational Imaging by Second-Harmonic Generation Microscopy
Abstract
Ion beam shaping is a novel and powerful tool to engineer nanocomposites with effective threedimensional (3D) architectures. In particular, this technique offers the possibility to precisely control the size, shape and 3D orientation of metallic nanoparticles at the nanometer scale while keeping the particle volume constant. Here, we use swift heavy ions of xenon for irradiation in order to successfully<br/>fabricate nanocomposites consisting of anisotropic gold nanoparticle that are oriented in 3D and embedded in silica matrix. Furthermore, we investigate individual nanorods using a nonlinear optical microscope based on second-harmonic generation (SHG). A tightly focused linearly or radially-polarized<br/>laser beam is used to excite nanorods with different orientations. We demonstrate high sensitivity of the SHG response for these polarizations to the orientation of the nanorods. The SHG measurements are in excellent agreement with the results of numerical modeling based on the boundary element method.