People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bruno, Annalisa
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2024Recent developments in low-dimensional heterostructures of halide perovskites and metal chalcogenides as emergent materials: Fundamental, implementation, and outlookcitations
- 2023Asynchronous Charge Carrier Injection in Perovskite Light-Emitting Transistorscitations
- 2023Light-emitting field-effect transistors (LET) based on metal halide perovskitescitations
- 2022Amplified Spontaneous Emission Threshold Dependence on Determination Method in Dye-Doped Polymer and Lead Halide Perovskite Waveguidescitations
- 2022Amplified spontaneous emission threshold dependence on determination method in dye-doped polymer and lead halide perovskite waveguidescitations
- 2020Potassium Acetate-Based Treatment for Thermally Co-Evaporated Perovskite Solar Cellscitations
- 2020Mixed-Dimensional Naphthylmethylammonium-Methylammonium Lead Iodide Perovskites with Improved Thermal Stabilitycitations
- 2018Engineering the Emission of Broadband 2D Perovskites by Polymer Distributed Bragg Reflectorscitations
- 2016X-ray Scintillation in Lead Halide Perovskite Crystalscitations
- 2013Preparation and characterization of novel nanocomposites of WS2nanotubes and polyfluorene conductive polymercitations
- 2013Microscopic and spectroscopic investigation of MoS2nanotubes/P3HT nanocompositescitations
Places of action
Organizations | Location | People |
---|
article
X-ray Scintillation in Lead Halide Perovskite Crystals
Abstract
Current technologies for X-ray detection rely on scintillation from expensive inorganic crystals grown at high-temperature, which so far has hindered the development of large-area scintillator arrays. Thanks to the presence of heavy atoms, solution-grown hybrid lead halide perovskite single crystals exhibit short X-ray absorption length and excellent detection efficiency. Here we compare X-ray scintillator characteristics of three-dimensional (3D) MAPbI3 and MAPbBr3 and two-dimensional (2D) (EDBE)PbCl4 hybrid perovskite crystals. X-ray excited thermoluminescence measurements indicate the absence of deep traps and a very small density of shallow trap states, which lessens after-glow effects. All perovskite single crystals exhibit high X-ray excited luminescence yields of >120,000 photons/MeV at low temperature. Although thermal quenching is significant at room temperature, the large exciton binding energy of 2D (EDBE)PbCl4 significantly reduces thermal effects compared to 3D perovskites, and moderate light yield of 9,000 photons/MeV can be achieved even at room temperature. This highlights the potential of 2D metal halide perovskites for large-area and low-cost scintillator devices for medical, security and scientific applications.