People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Gholipour, Behrad
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2018Optical bistability in shape-memory nanowire metamaterial arraycitations
- 2017Merging metamaterial and optical fiber technologies
- 2017Fibre-coupled photonic metadevices
- 2016Lithography assisted fiber-drawing nanomanufacturingcitations
- 2015Amorphous metal-sulphide microfibers enable photonic synapses for brain-like computingcitations
- 2014Optical and electronic properties of bismuth-implanted glassescitations
- 2014n-type chalcogenides by ion implantationcitations
- 2014n-type chalcogenides by ion implantation.citations
- 2013On the analogy between photoluminescence and carrier-type reversal in Bi- and Pb-doped glasses ; Analogie mezi fotoluminescencí a změnou typu vodivosti v Bi- a Pb-dotovaných sklechcitations
- 2013On the analogy between photoluminescence and carrier-type reversal in Bi-and Pb-doped glassescitations
- 2010Metamaterial electro-optic switch of nanoscale thicknesscitations
Places of action
Organizations | Location | People |
---|
article
Lithography assisted fiber-drawing nanomanufacturing
Abstract
We present a high-throughput and scalable technique for the production of metal nanowires embedded in glass fibres by taking advantage of thin film properties and patterning techniques commonly used in planar microfabrication. This hybrid process enables the fabrication of single nanowires and nanowire arrays encased in a preform material within a single fibre draw, providing an alternative to costly and time-consuming iterative fibre drawing. This method allows the combination of materials with different thermal properties to create functional optoelectronic nanostructures. As a proof of principle of the potential of this technique, centimetre long gold nanowires (bulk T<sub>m</sub> = 1064°C) embedded in silicate glass fibres (T<sub>g</sub> = 567°C) were drawn in a single step with high aspect ratios (>10<sup>4</sup>); such nanowires can be released from the glass matrix and show relatively high electrical conductivity. Overall, this fabrication method could enable mass manufacturing of metallic nanowires for plasmonics and nonlinear optics applications, as well as the integration of functional multimaterial structures for completely fiberised optoelectronic devices.