People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ramasamy, Parthiban
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2023Can Severe Plastic Deformation Tune Nanocrystallization in Fe-Based Metallic Glasses?citations
- 2023Toxic element-free Ti-based metallic glass ribbons with precious metal additionscitations
- 2023Short-range order patterns in Mg66Zn29Ca5 metallic glasscitations
- 2022MEMS-Based in situ electron-microscopy investigation of rapid solidification and heat treatment on eutectic Al-Cucitations
- 2021Evaluation of the Effect of Minor Additions in the Crystallization Path of [(Fe0.5Co0.5)0.75B0.2Si0.05]100-xMx Metallic Glasses by Means of Mössbauer Spectroscopycitations
- 2020Soft Ferromagnetic Bulk Metallic Glass with Potential Self-Healing Abilitycitations
- 2020Structural and Phase Evolution upon Annealing of Fe76Si9−xB10P5Mox (x = 0, 1, 2 and 3) Alloyscitations
- 2019The influence of partial replacement of Cu with Ga on the corrosion behavior of Ti40Zr10Cu36PD14 metallic glassescitations
- 2019The influence of partial replacement of Cu with Ga on the corrosion behavior of Ti 40 Zr 10 Cu 36 PD 14 metallic glassescitations
- 2019Polymorphic Transformation and Magnetic Properties of Rapidly Solidified Fe26.7Co26.7Ni26.7Si8.9B11.0 High-Entropy Alloyscitations
- 2018Soft Ferromagnetic Bulk Metallic Glasses with Enhanced Mechanical Properties
- 2018Thermal behavior, structural relaxation and magnetic study of a new Hf-microalloyed Co-based glassy alloy with high thermal stabilitycitations
- 2017Micro-patterning by thermoplastic forming of Ni-free Ti-based bulk metallic glassescitations
- 2016High pressure die casting of Fe-based metallic glasscitations
- 2016Effect of Cu and Gd on Structural and Magnetic Properties of Fe-Co-B-Si-Nb Metallic Glassescitations
- 2015Structure evolution of soft magnetic (Fe36Co36B19.2Si4.8Nb4)100-xCux (x = 0 and 0.5) bulk glassy alloys
Places of action
Organizations | Location | People |
---|
article
High pressure die casting of Fe-based metallic glass
Abstract
Soft ferromagnetic Fe-based bulk metallic glass key-shaped specimens with a maximum and minimum width of 25.4 and 5 mm, respectively, were successfully produced using a high pressure die casting (HPDC) method, The influence of die material, alloy temperature and flow rate on the microstructure, thermal stability and soft ferromagnetic properties has been studied. The results suggest that a steel die in which the molten metal flows at low rate and high temperature can be used to produce completely glassy samples. This can be attributed to the laminar filling of the mold and to a lower heat transfer coefficient, which avoids the skin effect in the steel mold. In addition, magnetic measurements reveal that the amorphous structure of the material is maintained throughout the key-shaped samples. Although it is difficult to control the flow and cooling rate of the molten metal in the corners of the key due to different cross sections, this can be overcome by proper tool geometry. The present results confirm that HPDC is a suitable method for the casting of Fe-based bulk glassy alloys even with complex geometries for a broad range of applications. ; publishedVersion