People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Camilleri, Josette
University of Birmingham
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (23/23 displayed)
- 2024Proposing new standards for testing solubility of pulp preservation materialscitations
- 2024Chemical, antibacterial and cytotoxic properties of four different endodontic sealer leachates over timecitations
- 2024Leaching and cytotoxicity of bismuth oxide in ProRoot MTAcitations
- 2024Characterization and Assessment of Physical Properties of 3 Single Syringe Hydraulic Cement-based Sealerscitations
- 2023Editorial
- 2022Surface characteristics and bacterial adhesion of endodontic cements.citations
- 2022Surface characteristics and bacterial adhesion of endodontic cements ; ENEngelskEnglishSurface characteristics and bacterial adhesion of endodontic cementscitations
- 2021Effect of different manipulations on the physical, chemical and microstructural characteristics of Biodentinecitations
- 2021PRILE 2021 guidelines for reporting laboratory studies in endodontologycitations
- 2020Antimicrobial and ultrastructural properties of root canal filling materials exposed to bacterial challengecitations
- 2020Characterization of heat resistant hydraulic sealer for warm vertical obturationcitations
- 2020Classification of hydraulic cements used in dentistrycitations
- 2019Bioactivity potential of Portland cement in regenerative endodontic procedurescitations
- 2019Investigation of the effect of the water to powder ratio on hydraulic cement propertiescitations
- 2018Surface Microstructural Changes and Release of Ions from Dental Metal Alloy Removable Prostheses in Patients Suffering from Acid Refluxcitations
- 2018The effect of mixing method on tricalcium silicate-based cementcitations
- 2018Assessment of corrosion resistance of cast cobalt- and nickel-chromium dental alloys in acidic environmentscitations
- 2017Antimicrobial activity of ProRoot MTA in contact with bloodcitations
- 2017Bonding over Dentin Replacement Materialscitations
- 2017Will Bioceramics be the Future Root Canal Filling Materials?citations
- 2016Assessment of the interaction of Portland cement-based materials with blood and tissue fluids using an animal modelcitations
- 2015Effect of sterilization techniques prior to antimicrobial testing on physical properties of dental restorative materialscitations
- 2014Color stability of white mineral trioxide aggregate in contact with hypochlorite solutioncitations
Places of action
Organizations | Location | People |
---|
article
Assessment of the interaction of Portland cement-based materials with blood and tissue fluids using an animal model
Abstract
<p>Portland cement used in the construction industry improves its properties when wet. Since most dental materials are used in a moist environment, Portland cement has been developed for use in dentistry. The first generation material is mineral trioxide aggregate (MTA), used in surgical procedures, thus in contact with blood. The aim of this study was to compare the setting of MTA in vitro and in vivo in contact with blood by subcutaneous implantation in rats. The tissue reaction to the material was also investigated. ProRoot MTA (Dentsply) was implanted in the subcutaneous tissues of Sprague-Dawley rats in opposite flanks and left in situ for 3 months. Furthermore the material was also stored in physiological solution in vitro. At the end of the incubation time, tissue histology and material characterization were performed. Surface assessment showed the formation of calcium carbonate for both environments. The bismuth was evident in the tissues thus showing heavy element contamination of the animal specimen. The tissue histology showed a chronic inflammatory cell infiltrate associated with the MTA. MTA interacts with the host tissues and causes a chronic inflammatory reaction when implanted subcutaneously. Hydration in vivo proceeds similarly to the in vitro model with some differences particularly in the bismuth oxide leaching patterns.</p>