People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Momand, Jamo
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2022Ultrathin, sputter-deposited, amorphous alloy films of ruthenium and molybdenumcitations
- 2022Ultrathin, sputter-deposited, amorphous alloy films of ruthenium and molybdenumcitations
- 2022Phase Separation in Ge-Rich GeSbTe at Different Length Scales: Melt-Quenched Bulk versus Annealed Thin Filmscitations
- 2022Nanostructure and thermal power of highly-textured and single-crystal-like Bi2Te3 thin filmscitations
- 2022Nanostructure and thermal power of highly-textured and single-crystal-like Bi2Te3 thin filmscitations
- 2021Polytriphenylamine composites for energy storage electrodes:Effect of pendant vs. backbone polymer architecture of the electroactive groupcitations
- 2021Pulsed laser deposited stoichiometric GaSb films for optoelectronic and phase change memory applicationscitations
- 2021Pulsed laser deposited stoichiometric GaSb films for optoelectronic and phase change memory applicationscitations
- 2021Controlling phase separation in thermoelectric Pb1-xGexTe to minimize thermal conductivitycitations
- 2021Polytriphenylamine composites for energy storage electrodescitations
- 2020Single-Source, Solvent-Free, Room Temperature Deposition of Black γ-CsSnI 3 Filmscitations
- 2020Differences in Sb2Te3 growth by pulsed laser and sputter depositioncitations
- 2020Single‐Source, Solvent‐Free, Room Temperature Deposition of Black γ‐CsSnI3 Filmscitations
- 2019Chemical Solution Deposition of Ordered 2D Arrays of Room-Temperature Ferrimagnetic Cobalt Ferrite Nanodotscitations
- 2019High Resolution Imaging of Chalcogenide Superlattices for Data Storage Applicationscitations
- 2019Low temperature epitaxy of tungsten-telluride heterostructure filmscitations
- 2019High Resolution Imaging of Chalcogenide Superlattices for Data Storage Applications:Progress and Prospectscitations
- 2018Tailoring the epitaxy of Sb2Te3 and GeTe thin films using surface passivationcitations
- 2017Formation of resonant bonding during growth of ultrathin GeTe filmscitations
- 2016Crystallization Kinetics of Supercooled Liquid Ge-Sb Based on Ultrafast Calorimetrycitations
- 2016Ordered Peierls distortion prevented at growth onset of GeTe ultra-thin filmscitations
- 2014Reversible amorphous-crystalline phase changes in a wide range of Se1-xTex alloys studied using ultrafast differential scanning calorimetrycitations
Places of action
Organizations | Location | People |
---|
article
Ordered Peierls distortion prevented at growth onset of GeTe ultra-thin films
Abstract
<p>Using reflection high-energy electron diffraction (RHEED), the growth onset of molecular beam epitaxy (MBE) deposited germanium telluride (GeTe) film on Si(111)-(root 3 x root 3) R30 degrees-Sb surfaces is investigated, and a larger than expected in-plane lattice spacing is observed during the deposition of the first two molecular layers. High-resolution transmission electron microscopy (HRTEM) confirms that the growth proceeds via closed layers, and that those are stable after growth. The comparison of the experimental Raman spectra with theoretical calculated ones allows assessing the shift of the phonon modes for a quasi-free-standing ultra-thin GeTe layer with larger in-plane lattice spacing. The manifestation of the latter phenomenon is ascribed to the influence of the interface and the confinement of GeTe within the limited volume of material available at growth onset, either preventing the occurrence of Peierls dimerization or their ordered arrangement to occur normally.</p>