People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Takamura, Yayoi
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2024Local strain inhomogeneities during electrical triggering of a metal–insulator transition revealed by X-ray microscopycitations
- 2019Phase transitions and magnetic domain coexistence in Nd0.5Sr0.5MnO3 thin filmscitations
- 2016Giant reversible anisotropy changes at room temperature in a (La,Sr)MnO<sub>3</sub>/Pb(Mg,Nb,Ti)O<sub>3</sub> magneto-electric heterostructurecitations
- 2006Tuning magnetic domain structure in nanoscale La0.7Sr0.3MnO3 islandscitations
Places of action
Organizations | Location | People |
---|
article
Giant reversible anisotropy changes at room temperature in a (La,Sr)MnO<sub>3</sub>/Pb(Mg,Nb,Ti)O<sub>3</sub> magneto-electric heterostructure
Abstract
In a model artificial multiferroic system consisting of a (011)-oriented ferroelectric Pb(Mg,Nb,Ti)O <sub>3</sub> substrate intimately coupled to an epitaxial ferromagnetic (La,Sr)MnO <sub>3</sub> film, electric field pulse sequences of less than 6 kV/cm induce large, reversible, and bistable remanent strains. The magnetic anisotropy symmetry reversibly switches from a highly anisotropic two-fold state to a more isotropic one, with concomitant changes in resistivity. Anisotropy changes at the scale of a single ferromagnetic domain were measured using X-ray microscopy, with electric-field dependent magnetic domain reversal showing that the energy barrier for magnetization reversal is drastically lowered. Free energy calculations confirm this barrier lowering by up to 70% due to the anisotropic strain changes generated by the substrate. Thus, we demonstrate that an electric field pulse can be used to 'set' and 'reset' the magnetic anisotropy orientation and resistive state in the film, as well as to lower the magnetization reversal barrier, showing a promising route towards electric-field manipulation of multifunctional nanostructures at room temperature.