People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Gomez-Romero, Pedro
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2018Unveiling BiVO4 nanorods as a novel anode material for high performance lithium ion capacitors: beyond intercalation strategiescitations
- 2018Energy harvesting from neutralization reactions with saline feedbackcitations
- 2018Hybrid graphene-polyoxometalates nanofluids as liquid electrodes for dual energy storage in novel flow cellscitations
- 2018Ultrathin hierarchical porous carbon nanosheets for high-performance supercapacitors and redox electrolyte energy storagecitations
- 2017Mimics of microstructures of Ni substituted Mn1-xNixCo2O4 for high energy density asymmetric capacitorscitations
- 2017Ultrahigh energy density supercapacitors through a double hybrid strategycitations
- 2017Nanostructured mixed transition metal oxides for high performance asymmetric supercapacitors: Facile synthetic strategycitations
- 2017Fundamentals of binary metal oxide-based supercapacitorscitations
- 2017Capacitive vs faradaic energy storage in a hybrid cell with LiFePO4/RGO positive electrode and nanocarbon negative electrodecitations
- 2016Aqueous synthesis of LiFePO4 with Fractal Granularitycitations
- 2016Electrochemical supercapacitive properties of polypyrrole thin films: influence of the electropolymerization methodscitations
- 2015Asymmetric supercapacitors based on hybrid CuO@Reduced Graphene Oxide@Sponge versus Reduced Graphene Oxide@Sponge Electrodescitations
- 2015An innovative 3-D nanoforest heterostructure made of polypyrrole coated silicon nanotrees for new high performance hybrid micro-supercapacitorscitations
- 2015Low-cost flexible supercapacitors with high-energy density based on nanostructured MnO2 and Fe2O3 thin films directly fabricated onto stainless steelcitations
- 2015A high voltage solid state symmetric supercapacitor based on graphene-polyoxometalate hybrid electrodes with a hydroquinone doped hybrid gel-electrolytecitations
Places of action
Organizations | Location | People |
---|
article
Aqueous synthesis of LiFePO4 with Fractal Granularity
Abstract
Lithium iron phosphate (LiFePO4) electrodes with fractal granularity are reported. They were made from a starting material prepared in water by a low cost, easy and environmentally friendly hydrothermal method, thus avoiding the use of organic solvents. Our method leads to pure olivine phase, free of the impurities commonly found after other water-based syntheses. The fractal structures consisted of nanoparticles grown into larger micro-sized formations which in turn agglomerate leading to high tap density electrodes, which is beneficial for energy density. These intricate structures could be easily and effectively coated with a thin and uniform carbon layer for increased conductivity, as it is well established for simpler microstructures. Materials and electrodes were studied by means of XRD, SEM, TEM, SAED, XPS, Raman and TGA. Last but not least, lithium transport through fractal LiFePO4 electrodes was investigated based upon fractal theory. These water-made fractal electrodes lead to high-performance lithium cells (even at high rates) tested by CV and galvanostatic charge-discharge, their performance is comparable to state of the art (but less environmentally friendly) electrodes.