People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Scott, Thomas Bligh
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (23/23 displayed)
- 2023An investigation of the reaction of metallic uranium with oxygen/nitrogen gas mixturescitations
- 2022Investigating the mechanical behaviour of Fukushima MCCI using synchrotron Xray tomography and digital volume correlationcitations
- 2021Investigating the microstructure and mechanical behaviour of simulant "lava-like" fuel containing materials from the Chernobyl reactor unit 4 meltdowncitations
- 2018A study of dynamic nanoscale corrosion initiation events by HS-AFMcitations
- 2018In-situ, time resolved monitoring of uranium in BFS:OPC grout. Part 2citations
- 2017Investigating corrosion using high-speed AFM
- 2017In-situ, time resolved monitoring of uranium in BFS:OPC grout. Part 1:citations
- 2016The crystallographic structure of the air-grown oxide on depleted uranium metalcitations
- 2016Structural effects in UO 2 thin films irradiated with U ionscitations
- 2016Atomic-scale Studies of Uranium Oxidation and Corrosion by Water Vapourcitations
- 2016Structural effects in UO2 thin films irradiated with U ionscitations
- 2015Nuclear waste viewed in a new lightcitations
- 2015Structural deformation of metallic uranium surrounding hydride growth sitescitations
- 2015Characterisation of electrodeposited polycrystalline uranium dioxide thin films on nickel foil for industrial applicationscitations
- 2015An investigation into heterogeneity in a single vein-type uranium ore depositcitations
- 2015The effects of metal surface geometry on the formation of uranium hydridecitations
- 2015The role of ferrite in Type 316H austenitic stainless steels on the susceptibility to creep cavitationcitations
- 2015An investigation on the persistence of uranium hydride during storage of simulant nuclear waste packagescitations
- 2014Electronic properties of γ-U and superconductivity of U–Mo alloyscitations
- 2013A surface science study of the initial stages of hydrogen corrosion on uranium metal and the role played by grain microstructurecitations
- 2013Altering the hydriding behaviour of uranium metal by induced oxide penetration around carbo-nitride inclusionscitations
- 2011Enhanced reactivity of nanoscale iron particles through a vacuum annealing process.citations
- 2010Oxidative corrosion of carbide inclusions at the surface of uranium metal during exposure to water vapour.
Places of action
Organizations | Location | People |
---|
article
Atomic-scale Studies of Uranium Oxidation and Corrosion by Water Vapour
Abstract
Understanding the corrosion of uranium is important for its safe, long-term storage. Uranium metal corrodes rapidly in air, but the exact mechanism remains subject to debate. Atom Probe Tomography was used to investigate the surface microstructure of metallic depleted uranium specimens following polishing and exposure to moist air. A complex, corrugated metal-oxide interface was observed, with approximately 60 at.% oxygen content within the oxide. Interestingly, a very thin (∼5 nm) interfacial layer of uranium hydride was observed at the oxide-metal interface. Exposure to deuterated water vapour produced an equivalent deuteride signal at the metal-oxide interface, confirming the hydride as originating via the water vapour oxidation mechanism. Hydroxide ions were detected uniformly throughout the oxide, yet showed reduced prominence at the metal interface. These results support a proposed mechanism for the oxidation of uranium in water vapour environments where the transport of hydroxyl species and the formation of hydride are key to understanding the observed behaviour.