Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Sakamoto, Shoya

  • Google
  • 1
  • 9
  • 20

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2016Room-temperature local ferromagnetism and its nanoscale expansion in the ferromagnetic semiconductor Ge1–xFex20citations

Places of action

Chart of shared publication
Ohya, Shinobu
1 / 1 shared
Tanaka, Masaaki
1 / 1 shared
Wakabayashi, Yuki K.
1 / 2 shared
Saitoh, Yuji
1 / 1 shared
Fujimori, Atsushi
1 / 1 shared
Yamagami, Hiroshi
1 / 1 shared
Takahashi, Yukio
1 / 2 shared
Takeda, Yuki-Haru
1 / 1 shared
Ishigami, Keisuke
1 / 1 shared
Chart of publication period
2016

Co-Authors (by relevance)

  • Ohya, Shinobu
  • Tanaka, Masaaki
  • Wakabayashi, Yuki K.
  • Saitoh, Yuji
  • Fujimori, Atsushi
  • Yamagami, Hiroshi
  • Takahashi, Yukio
  • Takeda, Yuki-Haru
  • Ishigami, Keisuke
OrganizationsLocationPeople

article

Room-temperature local ferromagnetism and its nanoscale expansion in the ferromagnetic semiconductor Ge1–xFex

  • Ohya, Shinobu
  • Tanaka, Masaaki
  • Wakabayashi, Yuki K.
  • Saitoh, Yuji
  • Fujimori, Atsushi
  • Yamagami, Hiroshi
  • Takahashi, Yukio
  • Sakamoto, Shoya
  • Takeda, Yuki-Haru
  • Ishigami, Keisuke
Abstract

<jats:title>Abstract</jats:title><jats:p>We investigate the local electronic structure and magnetic properties of the group-IV-based ferromagnetic semiconductor, Ge<jats:sub>1−<jats:italic>x</jats:italic></jats:sub>Fe<jats:sub><jats:italic>x</jats:italic></jats:sub> (GeFe), using soft X-ray magnetic circular dichroism. Our results show that the doped Fe 3<jats:italic>d</jats:italic> electrons are strongly hybridized with the Ge 4<jats:italic>p</jats:italic> states, and have a large orbital magnetic moment relative to the spin magnetic moment; i.e., <jats:italic>m</jats:italic><jats:sub>orb</jats:sub>/<jats:italic>m</jats:italic><jats:sub>spin</jats:sub> ≈ 0.1. We find that nanoscale local ferromagnetic regions, which are formed through ferromagnetic exchange interactions in the high-Fe-content regions of the GeFe films, exist even at room temperature, well above the Curie temperature of 20–100 K. We observe the intriguing nanoscale expansion of the local ferromagnetic regions with decreasing temperature, followed by a transition of the entire film into a ferromagnetic state at the Curie temperature.</jats:p>

Topics
  • semiconductor
  • Curie temperature