People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mecklenburg, Matthias
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2019Fracture, failure and compression behaviour of a 3D interconnected carbon aerogel (Aerographite) epoxy compositecitations
- 20173D carbon networks and their polymer compositescitations
- 2017Ultra-hoch gefüllte und orientierte CNT- und 3D-vernetzte Aerographit Epoxidkomposite: Synthese, Herstellung und Eigenschaften
- 2016Fracture, failure and compression behaviour of a 3D interconnected carbon aerogel (Aerographite) epoxy compositecitations
- 2016Electro-mechanical piezoresistive properties of three dimensionally interconnected carbon aerogel (Aerographite)-epoxy compositescitations
- 2015Three-dimensional Aerographite-GaN hybrid networkscitations
- 2015Three-dimensional Aerographite-GaN hybrid networks: single step fabrication of porous and mechanically flexible materials for multifunctional applications
Places of action
Organizations | Location | People |
---|
article
Three-dimensional Aerographite-GaN hybrid networks
Abstract
<p>Three dimensional (3D) elastic hybrid networks built from interconnected nano- and microstructure building units, in the form of semiconducting-carbonaceous materials, are potential candidates for advanced technological applications. However, fabrication of these 3D hybrid networks by simple and versatile methods is a challenging task due to the involvement of complex and multiple synthesis processes. In this paper, we demonstrate the growth of Aerographite-GaN 3D hybrid networks using ultralight and extremely porous carbon based Aerographite material as templates by a single step hydride vapor phase epitaxy process. The GaN nano- and microstructures grow on the surface of Aerographite tubes and follow the network architecture of the Aerographite template without agglomeration. The synthesized 3D networks are integrated with the properties from both, i.e., nanoscale GaN structures and Aerographite in the form of flexible and semiconducting composites which could be exploited as next generation materials for electronic, photonic, and sensors applications.</p>