Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ruan, Yating

  • Google
  • 1
  • 14
  • 11

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Operando two-terminal devices inside a transmission electron microscope11citations

Places of action

Chart of shared publication
Van Omme, Johannes Tijn
1 / 1 shared
Regan, B. C.
1 / 1 shared
Adabifiroozjaei, Esmaeil
1 / 3 shared
Jiang, Tianshu
1 / 5 shared
Arzumanov, Alexey
1 / 3 shared
Perez Garza, Hector Hugo
1 / 1 shared
Alff, Lambert
1 / 11 shared
Komissinskiy, Philipp
1 / 9 shared
Pivak, Yevheniy
1 / 2 shared
Hubbard, William A.
1 / 1 shared
Zintler, Alexander
1 / 4 shared
Winkler, Robert
1 / 3 shared
Recalde-Benitez, Oscar
1 / 1 shared
Molina-Luna, Leopoldo
1 / 30 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Van Omme, Johannes Tijn
  • Regan, B. C.
  • Adabifiroozjaei, Esmaeil
  • Jiang, Tianshu
  • Arzumanov, Alexey
  • Perez Garza, Hector Hugo
  • Alff, Lambert
  • Komissinskiy, Philipp
  • Pivak, Yevheniy
  • Hubbard, William A.
  • Zintler, Alexander
  • Winkler, Robert
  • Recalde-Benitez, Oscar
  • Molina-Luna, Leopoldo
OrganizationsLocationPeople

article

Operando two-terminal devices inside a transmission electron microscope

  • Van Omme, Johannes Tijn
  • Regan, B. C.
  • Adabifiroozjaei, Esmaeil
  • Jiang, Tianshu
  • Arzumanov, Alexey
  • Ruan, Yating
  • Perez Garza, Hector Hugo
  • Alff, Lambert
  • Komissinskiy, Philipp
  • Pivak, Yevheniy
  • Hubbard, William A.
  • Zintler, Alexander
  • Winkler, Robert
  • Recalde-Benitez, Oscar
  • Molina-Luna, Leopoldo
Abstract

<jats:title>Abstract</jats:title><jats:p>Advanced nanomaterials are at the core of innovation for the microelectronics industry. Designing, characterizing, and testing two-terminal devices, such as metal-insulator-metal structures, is key to improving material stack design and integration. Electrical biasing within in situ transmission electron microscopy using MEMS-based platforms is a promising technique for nano-characterization under <jats:italic>operando</jats:italic> conditions. However, conventional focused ion beam sample preparation can introduce parasitic current paths, limiting device performance and leading to overestimated electrical responses. Here we demonstrate connectivity of TEM lamella devices obtained from a novel electrical contacting method based solely on van der Waals forces. This method reduces parasitic leakage currents by at least five orders of magnitude relative to reported preparation approaches. Our methodology enables operation of stack devices inside a microscope with device currents as low as 10 pA. We apply this approach to observe in situ biasing-induced defect formation, providing valuable insights into the behavior of an SrTiO<jats:sub>3</jats:sub>-based memristor.</jats:p>

Topics
  • impedance spectroscopy
  • focused ion beam
  • transmission electron microscopy
  • defect
  • lamellae