People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Fitzek, H.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Three-dimensional distribution of individual atoms in the channels of beryl
Abstract
Single atom detection in nanoporous materials is a significant challenge, particularly due to their sensitivity to electron irradiation. Here, natural beryl (Be3Al2Si6O18) is used as a model system to quantitatively analyse the occupancy of its atomic channels. High-angle annular dark-field imaging in a scanning transmission electron microscope is employed, revealing the presence of Cs atoms within the channels. Through statistical analysis of atomic column intensities and comparison with a series of multislice simulations, we successfully pinpoint the three-dimensional positions of individual Cs atoms. Our findings indicate a non-uniform distribution of Cs atoms in the crystal. Importantly, by extracting both the crystal thickness and atomic positions from a single high-resolution micrograph, we effectively minimize the adverse effects of beam damage. This approach offers a promising pathway for accurately determining the three-dimensional distribution of dopant atoms in various porous materials, opening new possibilities for the study and application of these technologically important materials.