Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Taskin, Alexey A.

  • Google
  • 1
  • 9
  • 23

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Proximity-induced superconductivity in (Bi1−xSbx)2Te3 topological-insulator nanowires23citations

Places of action

Chart of shared publication
Lippertz, Gertjan
1 / 1 shared
Uday, Anjana
1 / 1 shared
Luysberg, Martina
1 / 14 shared
Bliesener, Andrea
1 / 1 shared
Ando, Yoichi
1 / 7 shared
Wei, Xiankui
1 / 1 shared
Bai, Mengmeng
1 / 1 shared
Mayer, Joachim
1 / 30 shared
Feng, Junya
1 / 1 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Lippertz, Gertjan
  • Uday, Anjana
  • Luysberg, Martina
  • Bliesener, Andrea
  • Ando, Yoichi
  • Wei, Xiankui
  • Bai, Mengmeng
  • Mayer, Joachim
  • Feng, Junya
OrganizationsLocationPeople

article

Proximity-induced superconductivity in (Bi1−xSbx)2Te3 topological-insulator nanowires

  • Lippertz, Gertjan
  • Uday, Anjana
  • Luysberg, Martina
  • Bliesener, Andrea
  • Ando, Yoichi
  • Taskin, Alexey A.
  • Wei, Xiankui
  • Bai, Mengmeng
  • Mayer, Joachim
  • Feng, Junya
Abstract

<jats:title>Abstract</jats:title><jats:p>When a topological insulator is made into a nanowire, the interplay between topology and size quantization gives rise to peculiar one-dimensional states whose energy dispersion can be manipulated by external fields. In the presence of proximity-induced superconductivity, these 1D states offer a tunable platform for Majorana zero modes. While the existence of such peculiar 1D states has been experimentally confirmed, the realization of robust proximity-induced superconductivity in topological-insulator nanowires remains a challenge. Here, we report the realization of superconducting topological-insulator nanowires based on (Bi<jats:sub>1−<jats:italic>x</jats:italic></jats:sub>Sb<jats:sub><jats:italic>x</jats:italic></jats:sub>)<jats:sub>2</jats:sub>Te<jats:sub>3</jats:sub> (BST) thin films. When two rectangular pads of palladium are deposited on a BST thin film with a separation of 100–200 nm, the BST beneath the pads is converted into a superconductor, leaving a nanowire of BST in-between. We found that the interface is epitaxial and has a high electronic transparency, leading to a robust superconductivity induced in the BST nanowire. Due to its suitable geometry for gate-tuning, this platform is promising for future studies of Majorana zero modes.</jats:p>

Topics
  • impedance spectroscopy
  • dispersion
  • thin film
  • one-dimensional
  • superconductivity
  • superconductivity
  • palladium