People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bliesener, Andrea
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Proximity-induced superconductivity in (Bi1−xSbx)2Te3 topological-insulator nanowires
Abstract
<jats:title>Abstract</jats:title><jats:p>When a topological insulator is made into a nanowire, the interplay between topology and size quantization gives rise to peculiar one-dimensional states whose energy dispersion can be manipulated by external fields. In the presence of proximity-induced superconductivity, these 1D states offer a tunable platform for Majorana zero modes. While the existence of such peculiar 1D states has been experimentally confirmed, the realization of robust proximity-induced superconductivity in topological-insulator nanowires remains a challenge. Here, we report the realization of superconducting topological-insulator nanowires based on (Bi<jats:sub>1−<jats:italic>x</jats:italic></jats:sub>Sb<jats:sub><jats:italic>x</jats:italic></jats:sub>)<jats:sub>2</jats:sub>Te<jats:sub>3</jats:sub> (BST) thin films. When two rectangular pads of palladium are deposited on a BST thin film with a separation of 100–200 nm, the BST beneath the pads is converted into a superconductor, leaving a nanowire of BST in-between. We found that the interface is epitaxial and has a high electronic transparency, leading to a robust superconductivity induced in the BST nanowire. Due to its suitable geometry for gate-tuning, this platform is promising for future studies of Majorana zero modes.</jats:p>