Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Doak, Scott

  • Google
  • 2
  • 33
  • 41

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2024Measuring coefficient of thermal expansion of materials of micrometre size using SEM/FIB microscope with in situ MEMS heating stage2citations
  • 2019Liquid–liquid phase separation morphologies in ultra-white beetle scales and a synthetic equivalent39citations

Places of action

Chart of shared publication
Liu, Changqing
1 / 8 shared
Zhou, Zhaoxia
1 / 4 shared
Davis, Samuel
1 / 1 shared
Jolley, Kenny
1 / 1 shared
Zhou, Han
1 / 3 shared
Mcclintock, Andrew
1 / 1 shared
Wu, Houzheng
1 / 3 shared
Robertson, Stuart
1 / 1 shared
Chart of publication period
2024
2019

Co-Authors (by relevance)

  • Liu, Changqing
  • Zhou, Zhaoxia
  • Davis, Samuel
  • Jolley, Kenny
  • Zhou, Han
  • Mcclintock, Andrew
  • Wu, Houzheng
  • Robertson, Stuart
OrganizationsLocationPeople

article

Liquid–liquid phase separation morphologies in ultra-white beetle scales and a synthetic equivalent

  • Dattani, Rajeev
  • Villanova, Julie
  • Mykhaylyk, Oleksandr
  • Furnass, Will
  • Hill, Christopher J.
  • Jones, Richard A. L.
  • Martin, Simon J.
  • Coles, David M.
  • Burg, Stephanie L.
  • Parker, Andrew
  • Ryan, Anthony J.
  • Vukusic, Pete
  • Parnell, Andrew J.
  • Doak, Scott
  • Prevost, Sylvain
  • Bianco, Antonino
  • Dennison, Andrew J. C.
  • Croucher, Mike
  • Dalgliesh, Robert
  • Mcloughlin, Daragh
  • Washington, Adam
  • Hutchings, Mark
  • Parnell, Steven R.
  • Vasilev, Cvetelin
  • Clarke, Nigel
  • Fairclough, Patrick
Abstract

<jats:title>Abstract</jats:title><jats:p><jats:italic>Cyphochilus</jats:italic> beetle scales are amongst the brightest structural whites in nature, being highly opacifying whilst extremely thin. However, the formation mechanism for the voided intra-scale structure is unknown. Here we report 3D x-ray nanotomography data for the voided chitin networks of intact white scales of <jats:italic>Cyphochilus</jats:italic> and <jats:italic>Lepidiota stigma</jats:italic>. Chitin-filling fractions are found to be 31 ± 2% for <jats:italic>Cyphochilus</jats:italic> and 34 ± 1% for <jats:italic>Lepidiota stigma</jats:italic>, indicating previous measurements overestimated their density. Optical simulations using finite-difference time domain for the chitin morphologies and simulated Cahn-Hilliard spinodal structures show excellent agreement. Reflectance curves spanning filling fraction of 5-95% for simulated spinodal structures, pinpoint optimal whiteness for 25% chitin filling. We make a simulacrum from a polymer undergoing a strong solvent quench, resulting in highly reflective (~94%) white films. In-situ X-ray scattering confirms the nanostructure is formed through spinodal decomposition phase separation. We conclude that the ultra-white beetle scale nanostructure is made via liquid–liquid phase separation.</jats:p>

Topics
  • density
  • impedance spectroscopy
  • polymer
  • simulation
  • spinodal decomposition
  • liquid phase
  • X-ray scattering