Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Akhtar, Muhammad Shahbaz

  • Google
  • 1
  • 9
  • 16

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Green synthesis of magnetite iron oxide nanoparticles using Azadirachta indica leaf extract loaded on reduced graphene oxide and degradation of methylene blue16citations

Places of action

Chart of shared publication
Al-Mohaimeed, Amal M.
1 / 2 shared
Al-Onazi, Wedad A.
1 / 3 shared
Rizwan, Muhammad
1 / 6 shared
Chung, Shinho
1 / 1 shared
Iqbal, Rashid
1 / 5 shared
Ditta, Allah
1 / 1 shared
Irshad, Muhammad Atif
1 / 1 shared
Nakashima, Yoshitaka
1 / 1 shared
Fiaz, Sania
1 / 1 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Al-Mohaimeed, Amal M.
  • Al-Onazi, Wedad A.
  • Rizwan, Muhammad
  • Chung, Shinho
  • Iqbal, Rashid
  • Ditta, Allah
  • Irshad, Muhammad Atif
  • Nakashima, Yoshitaka
  • Fiaz, Sania
OrganizationsLocationPeople

article

Green synthesis of magnetite iron oxide nanoparticles using Azadirachta indica leaf extract loaded on reduced graphene oxide and degradation of methylene blue

  • Al-Mohaimeed, Amal M.
  • Al-Onazi, Wedad A.
  • Rizwan, Muhammad
  • Chung, Shinho
  • Iqbal, Rashid
  • Ditta, Allah
  • Irshad, Muhammad Atif
  • Nakashima, Yoshitaka
  • Akhtar, Muhammad Shahbaz
  • Fiaz, Sania
Abstract

<jats:title>Abstract</jats:title><jats:p>In the current arena, new-generation functional nanomaterials are the key players for smart solutions and applications including environmental decontamination of pollutants. Among the plethora of new-generation nanomaterials, graphene-based nanomaterials and nanocomposites are in the driving seat surpassing their counterparts due to their unique physicochemical characteristics and superior surface chemistry. The purpose of the present research was to synthesize and characterize magnetite iron oxide/reduced graphene oxide nanocomposites (FeNPs/rGO) via a green approach and test its application in the degradation of methylene blue. The modified Hummer's protocol was adopted to synthesize graphene oxide (GO) through a chemical exfoliation approach using a graphitic route. Leaf extract of <jats:italic>Azadirachta indica</jats:italic> was used as a green reducing agent to reduce GO into reduced graphene oxide (rGO). Then, using the green deposition approach and <jats:italic>Azadirachta indica</jats:italic> leaf extract, a nanocomposite comprising magnetite iron oxides and reduced graphene oxide i.e., FeNPs/rGO was synthesized. During the synthesis of functionalized FeNPs/rGO, <jats:italic>Azadirachta indica</jats:italic> leaf extract acted as a reducing, capping, and stabilizing agent. The final synthesized materials were characterized and analyzed using an array of techniques such as scanning electron microscopy (SEM)-energy dispersive X-ray microanalysis (EDX), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction analysis, and UV–visible spectrophotometry. The UV–visible spectrum was used to evaluate the optical characteristics and band gap. Using the FT-IR spectrum, functional groupings were identified in the synthesized graphene-based nanomaterials and nanocomposites. The morphology and elemental analysis of nanomaterials and nanocomposites synthesized via the green deposition process were investigated using SEM–EDX. The GO, rGO, FeNPs, and FeNPs/rGO showed maximum absorption at 232, 265, 395, and 405 nm, respectively. FTIR spectrum showed different functional groups (OH, COOH, C=O), C–O–C) modifying material surfaces. Based on Debye Sherrer's equation, the mean calculated particle size of all synthesized materials was &lt; 100 nm (GO = 60–80, rGO = 90–95, FeNPs = 70–90, Fe/GO = 40–60, and Fe/rGO = 80–85 nm). Graphene-based nanomaterials displayed rough surfaces with clustered and spherical shapes and EDX analysis confirmed the presence of both iron and oxygen in all the nanocomposites. The final nanocomposites produced via the synthetic process degraded approximately 74% of methylene blue. Based on the results, it is plausible to conclude that synthesized FeNPs/rGO nanocomposites can also be used as a potential photocatalyst degrader for other different dye pollutants due to their lower band gap.</jats:p>

Topics
  • nanoparticle
  • Deposition
  • nanocomposite
  • impedance spectroscopy
  • surface
  • scanning electron microscopy
  • x-ray diffraction
  • Oxygen
  • iron
  • Energy-dispersive X-ray spectroscopy
  • Fourier transform infrared spectroscopy
  • elemental analysis
  • spectrophotometry