People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Matsuda, Atsunori
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
- 2024Structure and particle surface analysis of Li2S–P2S5–LiI-type solid electrolytes synthesized by liquid-phase shakingcitations
- 2024Polybenzimidazole dispersed polymer coated nanowires as efficient electrolytes for proton exchange membrane fuel cellscitations
- 2020Improved green body strength using PMMA–Al<sub>2</sub>O<sub>3</sub> composite particles fabricated via electrostatic assemblycitations
Places of action
Organizations | Location | People |
---|
article
Polybenzimidazole dispersed polymer coated nanowires as efficient electrolytes for proton exchange membrane fuel cells
Abstract
<jats:title>Abstract</jats:title><jats:p>In this study, polymer-coated anisotropic inorganic nanowires dispersed in PBI matrix were introduced to construct 1D proton conducting channels within PBI. Ionic-liquid and solvothermal methods were used for the synthesis of ZrO<jats:sub>2</jats:sub> and W<jats:sub>18</jats:sub>O<jats:sub>49</jats:sub> NWs, which were coated with PVPA and PDDA polymers to increase their proton conductivity. Our results showed that, prepared membranes have amorphous nature due to the dominating presence of PBI. SEM analysis revealed the average thickness of membrane of about 36 µm. TG/DTA analysis detected lower weight loss of W<jats:sub>18</jats:sub>O<jats:sub>49</jats:sub> NWs (total 2.8%) compared to ZrO<jats:sub>2</jats:sub> NWs (18%). Proton conductivity analysis showed that, PDDA/W<jats:sub>18</jats:sub>O<jats:sub>49</jats:sub> NWs possess relatively 4 times higher proton conductivity (4<jats:inline-formula><jats:alternatives><jats:tex-math></jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mo>×</mml:mo></mml:math></jats:alternatives></jats:inline-formula>10<jats:sup>−4</jats:sup> Scm<jats:sup>−1</jats:sup>) compared to PDDA/ZrO<jats:sub>2</jats:sub> NWs (1<jats:inline-formula><jats:alternatives><jats:tex-math></jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mo>×</mml:mo></mml:math></jats:alternatives></jats:inline-formula>10<jats:sup>−4</jats:sup> Scm<jats:sup>−1</jats:sup>) at 80 ℃. In addition, PDDA-coated W<jats:sub>18</jats:sub>O<jats:sub>49</jats:sub> NWs dispersed PBI membranes showed the highest fuel cell current density (1.2 A/cm<jats:sup>2</jats:sup>) and power density (215 mW/cm<jats:sup>2</jats:sup>) at 150 ℃ after 24 h which is nearly 2.5 times higher than pure PBI membrane. In addition, they exhibited the lowest in-situ proton resistance of about (0.47 Ω) compared with that of pure PBI membrane (0.8 Ω). Our results are introducing new concepts towards the development of thin and efficient polymer electrolyte membranes for PEM fuel cells.</jats:p>