Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Khalil, Ayman H.

  • Google
  • 1
  • 2
  • 2

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Predictive modeling of wide-shallow RC beams shear strength considering stirrups effect using (FEM-ML) approach2citations

Places of action

Chart of shared publication
Soliman, Ahmed A.
1 / 1 shared
Ebid, Ahmed
1 / 9 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Soliman, Ahmed A.
  • Ebid, Ahmed
OrganizationsLocationPeople

article

Predictive modeling of wide-shallow RC beams shear strength considering stirrups effect using (FEM-ML) approach

  • Soliman, Ahmed A.
  • Khalil, Ayman H.
  • Ebid, Ahmed
Abstract

<jats:title>Abstract</jats:title><jats:p>This paper presents an analysis and prediction of the shear strength of wide-shallow reinforced concrete beams, utilizing Finite Element Analysis (FEA) and machine learning techniques. The methodology involves validating a detailed Finite Element Model (FEM) against experimental results, conducting a parametric study, and developing three Machine Learning prediction equations. The FEM captures concrete and steel behaviors, including cracking and crushing for concrete and linear isotropic properties for steel reinforcement. Loading and boundary conditions are defined for accuracy and validated against 13 experimental specimens, exhibiting a maximum 8% and 12% difference in loads and deflections, respectively. A parametric study generates a dataset of 77 wide beam configurations, exploring variations in beam widths, concrete strengths, compression rebars, and shear reinforcement. This dataset is used to develop machine learning models, including “Genetic Programming (GP)”, “Evolutionary Polynomial Regression (EPR)”, and “Artificial Neural Network (ANN)”. Comparative analysis reveals GP and EPR models with over 95% correlation, while the ANN model outperforms with 99% accuracy. Sensitivity analysis underscores the significant influence of concrete strength and beam aspect ratio on shear strength. In conclusion, the study demonstrates the potential of FEA and machine learning models to predict shear strength in wide-shallow reinforced concrete beams, providing valuable insights for architectural design and engineering practices and emphasizing the role of concrete strength and beam geometry in shear behavior.</jats:p>

Topics
  • impedance spectroscopy
  • strength
  • steel
  • electron spin resonance spectroscopy
  • isotropic
  • finite element analysis
  • machine learning