Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Lee, Dongwon

  • Google
  • 1
  • 7
  • 1

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Development of stochastically reconstructed 3D porous media micromodels using additive manufacturing: numerical and experimental validation1citations

Places of action

Chart of shared publication
Yiotis, Andreas
1 / 1 shared
Varouchakis, Emmanouil A.
1 / 1 shared
Tzortzakis, Stelios
1 / 1 shared
Manousidaki, Mary
1 / 1 shared
Ruf, Matthias
1 / 4 shared
Karadimitriou, Nikolaos
1 / 3 shared
Steeb, Holger
1 / 15 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Yiotis, Andreas
  • Varouchakis, Emmanouil A.
  • Tzortzakis, Stelios
  • Manousidaki, Mary
  • Ruf, Matthias
  • Karadimitriou, Nikolaos
  • Steeb, Holger
OrganizationsLocationPeople

article

Development of stochastically reconstructed 3D porous media micromodels using additive manufacturing: numerical and experimental validation

  • Yiotis, Andreas
  • Varouchakis, Emmanouil A.
  • Tzortzakis, Stelios
  • Manousidaki, Mary
  • Ruf, Matthias
  • Karadimitriou, Nikolaos
  • Lee, Dongwon
  • Steeb, Holger
Abstract

<jats:title>Abstract</jats:title><jats:p>We propose an integrated methodology for the design and fabrication of 3D micromodels that are suitable for the pore-scale study of transport processes in macroporous materials. The micromodels, that bear the pore-scale characteristics of sandstone, such as porosity, mean pore size, etc, are designed following a stochastic reconstruction algorithm that allows for fine-tuning the porosity and the correlation length of the spatial distribution of the solid material. We then construct a series of 3D micromodels at very fine resolution (i.e. <jats:inline-formula><jats:alternatives><jats:tex-math>16\, </jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mn>16</mml:mn><mml:mspace /><mml:mi>μ</mml:mi></mml:mrow></mml:math></jats:alternatives></jats:inline-formula>m) using a state-of-the-art 3D printing infrastructure, specifically a ProJet MJP3600 3D printer, that utilizes the Material Jetting technology. Within the technical constraints of the 3D printer resolution, the fabricated micromodels represent scaled-up replicas of natural sandstones, that are suitable for the study of the scaling between the permeability, the porosity and the mean pore size. The REV- and pore-scale characteristics of the resulting physical micromodels are recovered using a combination of X-ray micro-CT and microfluidic studies. The experimental results are then compared with single-phase flow simulations at pore-scale and geostatistic models in order to determine the effects of the design parameters on the intrinsic permeability and the spatial correlation of the velocity profile. Our numerical and experimental measurements reveal an excellent match between the properties of the designed and fabricated 3D domains, thus demonstrating the robustness of the proposed methodology for the construction of 3D micromodels with fine-tuned and well-controlled pore-scale characteristics. Furthermore, a pore-scale numerical study over a wider range of 3D digital domain realizations reveals a very good match of the measured permeabilities with the predictions of the Kozeny–Carman formulation based on a single control parameter, <jats:inline-formula><jats:alternatives><jats:tex-math>k_0</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>k</mml:mi><mml:mn>0</mml:mn></mml:msub></mml:math></jats:alternatives></jats:inline-formula>, that is found to have a practically constant value for porosities <jats:inline-formula><jats:alternatives><jats:tex-math>0.2</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>ϕ</mml:mi><mml:mo>≥</mml:mo><mml:mn>0.2</mml:mn></mml:mrow></mml:math></jats:alternatives></jats:inline-formula>. This, in turn, enables us to customize the sample size to meet REV constraints, including enlarging pore morphology while considering the Reynolds number. It is also found that at lower porosities there is a significant increase in the fraction of the non-percolating pores, thus leading to different <jats:inline-formula><jats:alternatives><jats:tex-math>k_0</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>k</mml:mi><mml:mn>0</mml:mn></mml:msub></mml:math></jats:alternatives></jats:inline-formula>, as the porosity approaches a numerically determined critical porosity value, <jats:inline-formula><jats:alternatives><jats:tex-math> _c</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>ϕ</mml:mi><mml:mi>c</mml:mi></mml:msub></mml:math></jats:alternatives></jats:inline-formula>, where the domain is no longer percolating.</jats:p>

Topics
  • porous
  • impedance spectroscopy
  • pore
  • phase
  • simulation
  • permeability
  • porosity
  • material jetting