Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Askari, Mohammad Bagher

  • Google
  • 2
  • 4
  • 45

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2024MoO3/WO3/rGO as electrode material for supercapacitor and catalyst for methanol and ethanol electrooxidation30citations
  • 2022A short review on transition metal chalcogenides/carbon nanocomposites for energy storage15citations

Places of action

Chart of shared publication
Salarizadeh, Parisa
2 / 2 shared
Zadeh, Mohammad Hassan Ramezan
1 / 1 shared
Rastgoo-Deylami, Mohadese
1 / 1 shared
Hooshyari, Khadijeh
1 / 3 shared
Chart of publication period
2024
2022

Co-Authors (by relevance)

  • Salarizadeh, Parisa
  • Zadeh, Mohammad Hassan Ramezan
  • Rastgoo-Deylami, Mohadese
  • Hooshyari, Khadijeh
OrganizationsLocationPeople

article

MoO3/WO3/rGO as electrode material for supercapacitor and catalyst for methanol and ethanol electrooxidation

  • Askari, Mohammad Bagher
  • Salarizadeh, Parisa
  • Zadeh, Mohammad Hassan Ramezan
Abstract

<jats:title>Abstract</jats:title><jats:p>The potential of metal oxides in electrochemical energy storage encouraged our research team to synthesize molybdenum oxide/tungsten oxide nanocomposites (MoO<jats:sub>3</jats:sub>/WO<jats:sub>3</jats:sub>) and their hybrid with reduced graphene oxide (rGO), in the form of MoO<jats:sub>3</jats:sub>/WO<jats:sub>3</jats:sub>/rGO as a substrate with relatively good electrical conductivity and suitable electrochemical active surface. In this context, we presented the electrochemical behavior of these nanocomposites as an electrode for supercapacitors and as a catalyst in the oxidation process of methanol/ethanol. Our engineered samples were characterized by X-ray diffraction pattern and scanning electron microscopy. As a result, MoO<jats:sub>3</jats:sub>/WO<jats:sub>3</jats:sub> and MoO<jats:sub>3</jats:sub>/WO<jats:sub>3</jats:sub>/rGO indicated specific capacitances of 452 and 583 F/g and stability of 88.9% and 92.6% after 2000 consecutive GCD cycles, respectively. Also, MoO<jats:sub>3</jats:sub>/WO<jats:sub>3</jats:sub> and MoO<jats:sub>3</jats:sub>/WO<jats:sub>3</jats:sub>/rGO nanocatalysts showed oxidation current densities of 117 and 170 mA/cm<jats:sup>2</jats:sup> at scan rate of 50 mV/s, and stability of 71 and 89%, respectively in chronoamperometry analysis, in the MOR process. Interestingly, in the ethanol oxidation process, corresponding oxidation current densities of 42 and 106 mA/cm<jats:sup>2</jats:sup> and stability values of 70 and 82% were achieved. MoO<jats:sub>3</jats:sub>/WO<jats:sub>3</jats:sub> and MoO<jats:sub>3</jats:sub>/WO<jats:sub>3</jats:sub>/rGO can be attractive options paving the way for prospective alcohol-based fuel cells.</jats:p>

Topics
  • nanocomposite
  • surface
  • molybdenum
  • scanning electron microscopy
  • x-ray diffraction
  • tungsten
  • electrical conductivity
  • alcohol
  • chronoamperometry