Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bruschini, Claudio

  • Google
  • 2
  • 8
  • 8

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2024Coupling a recurrent neural network to SPAD TCSPC systems for real-time fluorescence lifetime imaging8citations
  • 2008Achievements & Bottlenecks in Humanitarian Demining EU-funded research: Final Results from the EC DELVE projectcitations

Places of action

Chart of shared publication
Charbon, Edoardo
1 / 1 shared
Lin, Yang
1 / 1 shared
Mos, Paul
1 / 1 shared
Ardelean, Andrei
1 / 1 shared
Schleijpen, H. M. A.
1 / 1 shared
Breejen, E. Den
1 / 1 shared
Sahli, Hichem
1 / 2 shared
Kempen, Luc Van
1 / 2 shared
Chart of publication period
2024
2008

Co-Authors (by relevance)

  • Charbon, Edoardo
  • Lin, Yang
  • Mos, Paul
  • Ardelean, Andrei
  • Schleijpen, H. M. A.
  • Breejen, E. Den
  • Sahli, Hichem
  • Kempen, Luc Van
OrganizationsLocationPeople

article

Coupling a recurrent neural network to SPAD TCSPC systems for real-time fluorescence lifetime imaging

  • Bruschini, Claudio
  • Charbon, Edoardo
  • Lin, Yang
  • Mos, Paul
  • Ardelean, Andrei
Abstract

<jats:title>Abstract</jats:title><jats:p>Fluorescence lifetime imaging (FLI) has been receiving increased attention in recent years as a powerful diagnostic technique in biological and medical research. However, existing FLI systems often suffer from a tradeoff between processing speed, accuracy, and robustness. Inspired by the concept of Edge Artificial Intelligence (Edge AI), we propose a robust approach that enables fast FLI with no degradation of accuracy. This approach couples a recurrent neural network (RNN), which is trained to estimate the fluorescence lifetime directly from raw timestamps without building histograms, to SPAD TCSPC systems, thereby drastically reducing transfer data volumes and hardware resource utilization, and enabling real-time FLI acquisition. We train two variants of the RNN on a synthetic dataset and compare the results to those obtained using center-of-mass method (CMM) and least squares fitting (LS fitting). Results demonstrate that two RNN variants, gated recurrent unit (GRU) and long short-term memory (LSTM), are comparable to CMM and LS fitting in terms of accuracy, while outperforming them in the presence of background noise by a large margin. To explore the ultimate limits of the approach, we derive the Cramer-Rao lower bound of the measurement, showing that RNN yields lifetime estimations with near-optimal precision. To demonstrate real-time operation, we build a FLI microscope based on an existing SPAD TCSPC system comprising a 32<jats:inline-formula><jats:alternatives><jats:tex-math> </jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mo>×</mml:mo></mml:math></jats:alternatives></jats:inline-formula>32 SPAD sensor named Piccolo. Four quantized GRU cores, capable of processing up to 4 million photons per second, are deployed on the Xilinx Kintex-7 FPGA that controls the Piccolo. Powered by the GRU, the FLI setup can retrieve real-time fluorescence lifetime images at up to 10 frames per second. The proposed FLI system is promising and ideally suited for biomedical applications, including biological imaging, biomedical diagnostics, and fluorescence-assisted surgery, etc.</jats:p>

Topics
  • impedance spectroscopy
  • laser sintering