Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bakr, Ahmed M.

  • Google
  • 1
  • 5
  • 23

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Structural, dielectric, and antimicrobial evaluation of PMMA/CeO2 for optoelectronic devices23citations

Places of action

Chart of shared publication
Azab, A. A.
1 / 1 shared
Awady, Mohamed E. El
1 / 1 shared
Hamed, Ahmed A.
1 / 1 shared
Elzwawy, Amir
1 / 4 shared
Darwish, Abdelfattah
1 / 1 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Azab, A. A.
  • Awady, Mohamed E. El
  • Hamed, Ahmed A.
  • Elzwawy, Amir
  • Darwish, Abdelfattah
OrganizationsLocationPeople

article

Structural, dielectric, and antimicrobial evaluation of PMMA/CeO2 for optoelectronic devices

  • Azab, A. A.
  • Awady, Mohamed E. El
  • Hamed, Ahmed A.
  • Elzwawy, Amir
  • Bakr, Ahmed M.
  • Darwish, Abdelfattah
Abstract

<jats:title>Abstract</jats:title><jats:p>In the current report, we have successfully synthesized nanocomposites of PMMA incorporating different doping of CeO<jats:sub>2</jats:sub> through a chemical approach. XRD results reflects decent matching for CeO<jats:sub>2</jats:sub> nanoparticles with 29 nm crystallite size. FTIR spectroscopy demonstrates the characteristic functional groups validating the successful formation of the composite. The optical study of PMMA and the nanocomposites has proven that the optical properties such as band gap, refractive index, optical permittivity, and loss tangent factor are affected by adding CeO<jats:sub>2</jats:sub> to the PMMA matrix.The peak residing around 420 nm by UV measurements is allocated to occurring electrons photoexcitation from the valence to conduction band inherent in CeO<jats:sub>2</jats:sub>. The dielectric measurements were achieved using broadband dielectric spectroscopy upon a wide span of frequencies (10<jats:sup>–1</jats:sup>–10<jats:sup>7</jats:sup> Hz) and within temperatures from − 10 to 80 °C with a step of 10 °C. The permittivity decreases by adding CeO<jats:sub>2</jats:sub> and the dielectric parameters are thermally enhanced, however, the temperature influence is based on CeO<jats:sub>2</jats:sub> content, the higher the CeO<jats:sub>2</jats:sub> amount, the higher the influence of temperature. The results of the nanocomposites revealed antibacterial activity counter to gram-positive bacteria strain (<jats:italic>S. aureus</jats:italic>, and <jats:italic>B. subtilis</jats:italic>), and gram-negative bacteria (<jats:italic>E. coli</jats:italic>, and <jats:italic>K. pneumoniae</jats:italic>), yeast (<jats:italic>C. albicans</jats:italic>, as well as fungi (<jats:italic>A. niger</jats:italic>). Inherently, the change in CeO<jats:sub>2</jats:sub> concentration from 0.01 to 0.1 wt% delivers maximum influence against gram-negative bacteria. These PMMA CeO<jats:sub>2</jats:sub>-doped composites are beneficial for optoelectronic areas and devices.</jats:p>

Topics
  • nanoparticle
  • nanocomposite
  • impedance spectroscopy
  • x-ray diffraction