Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Thambiliyagodage, Charitha

  • Google
  • 1
  • 4
  • 23

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024In vitro influence of PEG functionalized ZnO–CuO nanocomposites on bacterial growth23citations

Places of action

Chart of shared publication
Ekanayake, Geethma
1 / 2 shared
Liyanaarachchi, Heshan
1 / 1 shared
Usgodaarachchi, Leshan
1 / 2 shared
Mendis, Amavin
1 / 2 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Ekanayake, Geethma
  • Liyanaarachchi, Heshan
  • Usgodaarachchi, Leshan
  • Mendis, Amavin
OrganizationsLocationPeople

article

In vitro influence of PEG functionalized ZnO–CuO nanocomposites on bacterial growth

  • Thambiliyagodage, Charitha
  • Ekanayake, Geethma
  • Liyanaarachchi, Heshan
  • Usgodaarachchi, Leshan
  • Mendis, Amavin
Abstract

<jats:title>Abstract</jats:title><jats:p>Polyethyleneglycol-coated biocompatible CuO–ZnO nanocomposites were fabricated hydrothermally varying Zn:Cu ratios as 1:1, 2:1, and 1:2, and their antibacterial activity was determined through the well diffusion method against the Gram-negative <jats:italic>Escherichia coli</jats:italic><jats:bold><jats:italic>,</jats:italic></jats:bold><jats:italic> Pseudomonas aeruginosa</jats:italic>, <jats:italic>Klebsiella pneumoniae,</jats:italic> and the Gram-positive <jats:italic>Staphylococcus aureus.</jats:italic> The minimum inhibitory concentration and the minimum bactericidal concentration values of the synthesized samples were determined. Subsequently, the time synergy kill assay was performed to elucidate the nature of the overall inhibitory effect against the aforementioned bacterial species. The mean zone of inhibition values for all four samples are presented. The inhibitory effect increased with increasing concentration of the nanocomposite (20, 40 and 60 mg/ml) on all the bacterial species except for <jats:italic>S. aureus</jats:italic>. According to the MBC/MIC ratio, ZnO was found to be bacteriostatic for <jats:italic>E. coli</jats:italic> and <jats:italic>P. aeruginosa,</jats:italic> and bactericidal for <jats:italic>S. aureus</jats:italic> and <jats:italic>K. pneumoniae</jats:italic>. Zn:Cu 2:1 was bactericidal on all bacterial species. A bacteriostatic effect was observed on <jats:italic>E. coli</jats:italic> and <jats:italic>P. aeruginosa</jats:italic> in the presence of Zn:Cu 1:1 whereas, it showed a bactericidal effect on <jats:italic>S. aureus</jats:italic> and <jats:italic>K. pneumoniae.</jats:italic> Zn:Cu 1:2 exhibited a bacteriostatic effect on <jats:italic>E. coli</jats:italic> while a bactericidal effect was observed for <jats:italic>E. coli, P. aeruginosa,</jats:italic> and <jats:italic>K. pneumoniae.</jats:italic> The metal oxide nanocomposites were found to be more sensitive towards the Gram-positive strain than the Gram-negative strains<jats:italic>.</jats:italic> Further, all the nanocomposites possess anti-oxidant activity as shown by the DPPH assay.</jats:p>

Topics
  • nanocomposite