Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Murthy, A. Ramachandra

  • Google
  • 1
  • 5
  • 1

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Analysing the influence of ground granulated blast furnace slag and steel fibre on RC beams flexural behaviour1citations

Places of action

Chart of shared publication
Sabi, Ehab
1 / 2 shared
Gandla, Kumaraswamy
1 / 1 shared
Nipun, G.
1 / 1 shared
Srinivasu, K.
1 / 1 shared
Prasanna, P. K.
1 / 1 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Sabi, Ehab
  • Gandla, Kumaraswamy
  • Nipun, G.
  • Srinivasu, K.
  • Prasanna, P. K.
OrganizationsLocationPeople

article

Analysing the influence of ground granulated blast furnace slag and steel fibre on RC beams flexural behaviour

  • Sabi, Ehab
  • Gandla, Kumaraswamy
  • Nipun, G.
  • Srinivasu, K.
  • Murthy, A. Ramachandra
  • Prasanna, P. K.
Abstract

<jats:title>Abstract</jats:title><jats:p>This study examines the effect of Ground Granulated Blast Furnace Slag<jats:bold> (</jats:bold>GGBS) and steel fibers on the flexural behaviour of RC beams under monotonic loading. Various percentages of GGBS were used to substitute cement, namely 0%, 20%, 40%, 60%, and 80% and fibers were added to the concrete mix as 0%, 0.5%, 1%, and 1.5% of the volume of concrete. The load–deflection behaviour of GGBS-incorporated RC beams with fibers was compared with the control RC beam. Beams were tested under load control for 28 days and 180 days. The ultimate load of the GGBS-incorporated RC beam up to 40% cement replacement was found to higher than that of the control beam. The strength of concrete is reduced by 28% and 19% when cement was partially replaced by 80% of GGBS at 28 and 180 days, respectively, compared to control concrete without fibres. Further, the analytical load–deflection response of GGBS-incorporated RC beams was determined by using several codes of practice, namely, ACI 318-11(2011), CSA A23.3-04 (2004), EC-04 (2004), and IS 456 (2000). The Codal provisions were primarily based on the effective moment of inertia, Young’s modulus, and modulus of rupture, stiffness, and cracking. Average load–deflection plots obtained from experiments were compared with the computed load–deflection of analytical studies. It was found that the analytically predicted load–deflection behaviour is comparable with the corresponding average experimental load–deflection response. Moment curvature relations were also developed for RC beams.</jats:p>

Topics
  • impedance spectroscopy
  • experiment
  • strength
  • steel
  • cement
  • flexural strength