Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Mehaney, Ahmed

  • Google
  • 1
  • 5
  • 28

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Angular surface plasmon resonance-based sensor with a silver nanocomposite layer for effective water pollution detection28citations

Places of action

Chart of shared publication
Sayed, Fatma A.
1 / 1 shared
Eissa, M. F.
1 / 2 shared
Elsayed, Hussein A.
1 / 1 shared
Al-Dossari, M.
1 / 2 shared
Aly, Arafa H.
1 / 5 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Sayed, Fatma A.
  • Eissa, M. F.
  • Elsayed, Hussein A.
  • Al-Dossari, M.
  • Aly, Arafa H.
OrganizationsLocationPeople

article

Angular surface plasmon resonance-based sensor with a silver nanocomposite layer for effective water pollution detection

  • Sayed, Fatma A.
  • Eissa, M. F.
  • Elsayed, Hussein A.
  • Al-Dossari, M.
  • Aly, Arafa H.
  • Mehaney, Ahmed
Abstract

<jats:title>Abstract</jats:title><jats:p>For sensing various samples of polluted water and various sodium chloride concentrations using an angular surface plasmon resonance (ASPR), we have introduced a conventional structure and a hybrid heterostructure in the current research. The suggested structures are composed of silver metal, dielectric layers, silver nanocomposite, and a sensing medium. The reflectance spectra of all structures in the visible region were obtained through the utilization of the transfer matrix method by using the angular interrogation method depending on the Kretschmann configuration. Through our findings, five substrate parameters have been optimized to attain the utmost level of sensitivity across all structures: the thickness of Ag-metal, the type and thickness of dielectric materials, the host material type and the volume fraction of nanoparticles for the nanocomposite layer. In this regard, the suggested sensor provides excellent performance with a sensitivity of 448.1°<jats:inline-formula><jats:alternatives><jats:tex-math>/{RIU}</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mo>/</mml:mo><mml:mtext>RIU</mml:mtext></mml:mrow></mml:math></jats:alternatives></jats:inline-formula>, signal-to-noise ratio of 0.787, sensor resolution of 0.284°, and figure of merit of 78.766 RIU<jats:sup>−1</jats:sup>. Therefore, we believe that the introduced design of our ASPR sensor presents a good candidate for an accurate and efficient detection of low concentrations of contaminated water and sodium chloride as well.</jats:p>

Topics
  • nanoparticle
  • nanocomposite
  • surface
  • silver
  • Sodium