People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Fouad, Yasser
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2024Fatigue, depression, and sleep disorders are more prevalent in patients with metabolic-associated fatty liver diseasescitations
- 2024Repetitive recycling effects on mechanical characteristics of poly‐lactic acid and PLA/spent coffee grounds composite used for 3D printing filamentcitations
- 2024Leverage of aluminium oxynitride on the impact resistance of Kevlar‐impregnated epoxy composites: Experimental and numerical evaluation under low‐velocity impactcitations
- 2024Mitigation of bio-corrosion characteristics of coronary artery stent by optimising fs-laser micromachining parameters
- 2023Analytical modeling and experimental estimation of the dynamic mechanical characteristics of green composite: <i>Caesalpinia decapetala</i> seed reinforcementcitations
- 2023Experimental and numerical assessment of the flexural response of banana fiber sandwich epoxy compositecitations
Places of action
Organizations | Location | People |
---|
article
Experimental and numerical assessment of the flexural response of banana fiber sandwich epoxy composite
Abstract
<jats:title>Abstract</jats:title><jats:p>Recently, most service or product-oriented industries have been focusing on their activities to uphold the green and sustainable environment protocol owing to the increased environmental pollution. Concerning this issue, industries are now concentrating on developing recyclable or waste materials products. This research advocates developing and validating a banana fiber sandwich composite to promote the beneficial usage of bio-waste. The composite sandwich specimens were fabricated with resin-impregnated woven banana fiber mat as a skin, and the core was reinforced with three different weight percentages (5, 7.5 and 10%) of chopped banana fiber. The sandwich specimens were pressed into a three-point bending test to validate the structural integrity. The flexural characteristics like flexural strength and modulus were examined experimentally, whereas the key strength indices like flexural stiffness and core shear modulus were evaluated analytically. Post-fracture surfaces were studied through a scanning electron microscope to investigate the failure mechanism. The experimental and analytical results indicate that 10% banana fiber content in the sandwich core increases the flexural strength and flexural modulus to 225% and 147%, respectively, compared to the neat epoxy core. The numerical simulation was also performed through FEA to validate the experimental findings. The numerical results are in good concurrence with the experimental one.</jats:p>