Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Sharma, Subhash Kumar

  • Google
  • 1
  • 2
  • 19

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Preparation of graphene oxide-doped silica aerogel using supercritical method for efficient removal of emerging pollutants from wastewater19citations

Places of action

Chart of shared publication
Ranjani, P.
1 / 1 shared
Kumar, Rajnish
1 / 5 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Ranjani, P.
  • Kumar, Rajnish
OrganizationsLocationPeople

article

Preparation of graphene oxide-doped silica aerogel using supercritical method for efficient removal of emerging pollutants from wastewater

  • Sharma, Subhash Kumar
  • Ranjani, P.
  • Kumar, Rajnish
Abstract

<p>Emerging pollutants and a large volume of unused dyes from the textile industry have been contaminating water bodies. This work introduces a scalable approach to purifying water by the adsorption of Acid green 25 (AG), Crystal Violet (CV), and Sulfamethoxazole (SMA) from an aqueous solution by graphene oxide (GO) doped modified silica aerogel (GO-SA) with supercritical fluid deposition (SFD) method. Characterization of GO-SA using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), high-resolution scanning electron microscopy (HR-SEM), thermogravimetric analysis (TGA), and Brunauer–Emmett–Teller (BET) adsorption isotherms revealed the improvement in the adsorbent surface area, and its textural properties. The high removal percentages observed in most of the experimental runs provide evidence of the excellent performance of the adsorbent towards the anionic and cationic dyes along with the antibiotic. The adsorption isotherm and kinetics showed that the Langmuir isotherm and pseudo-second-order kinetic models could explain adsorption. The adsorbent holds a higher adsorption capacity for SMA (67.07 mg g<sup>−1</sup>) than for CV (41.46 mg g<sup>−1</sup>) and AG (20.56 mg g<sup>−1</sup>) due to the higher hydrophobicity that interacts with the hydrophobic adsorbent. The GO-SA successfully removed AG, CV, and SMA with removal percentages of 98.23%, 98.71%, and 94.46%, respectively. The parameters were optimized using Central Composite Design (RSM-CCD). The prepared aerogel showed excellent reusability with a removal efficiency of &gt; 85% even after 5 cycles. This study shows the potential of GO-SA adsorbent in textile and other wastewater purification.</p>

Topics
  • Deposition
  • surface
  • scanning electron microscopy
  • x-ray diffraction
  • composite
  • thermogravimetry
  • infrared spectroscopy