Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Zaini, Juliana Hj

  • Google
  • 1
  • 7
  • 4

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023An additive manufacturing approach based on electrohydrodynamic printing to fabricate P3HT:PCBM thin films4citations

Places of action

Chart of shared publication
Nauman, Malik Muhammad
1 / 1 shared
Esa, Zulfikre
1 / 1 shared
Ali, Kamran
1 / 3 shared
Aïssa, Brahim
1 / 2 shared
Rosei, Federico
1 / 17 shared
Jin, Lei
1 / 6 shared
Iqbal, Asif
1 / 2 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Nauman, Malik Muhammad
  • Esa, Zulfikre
  • Ali, Kamran
  • Aïssa, Brahim
  • Rosei, Federico
  • Jin, Lei
  • Iqbal, Asif
OrganizationsLocationPeople

article

An additive manufacturing approach based on electrohydrodynamic printing to fabricate P3HT:PCBM thin films

  • Nauman, Malik Muhammad
  • Esa, Zulfikre
  • Ali, Kamran
  • Aïssa, Brahim
  • Zaini, Juliana Hj
  • Rosei, Federico
  • Jin, Lei
  • Iqbal, Asif
Abstract

<jats:title>Abstract</jats:title><jats:p>Additive manufacturing (AM) enables the production of high value and high performance components with applications from aerospace to biomedical fields. We report here on the fabrication of poly(3-hexylthiophene): phenyl-C<jats:sub>61</jats:sub>-butyric acid methyl ester (P3HT:PCBM) thin films through the electrohydrodynamic atomization (EHDA) process and its integration as absorber layer for organic solar cells. Prior to the film fabrication, the optimization of the process was carried out by developing the operating envelope for the P3HT:PCBM ink to determine the optimal flow rate and the appropriate applied voltage to achieve a stable-cone deposition mode. The EHDA printed thin-film’s topography, morphology and optical properties were systematically analyzed. The root-mean-square roughness was found to vary significantly with the annealing temperature and the flow rate and ranged from 1.938 to 3.345 nm. The estimated film mass and thickness were found between 3.235 and 23.471 mg and 597.5 nm to 1.60 µm, respectively. The films exhibited a broad visible absorption spectrum ranging from ~ 340 to ~ 600 nm, with a maximum peak λ<jats:sub>max</jats:sub> located at ~ 500 nm. As the annealing temperature and the flow rate were increased, discernible alterations in the PCBM clusters were consequently observed in the blends of the film and the size of the PCBM clusters has decreased by 3% while the distance between them was highly reduced by as much as 82%.</jats:p>

Topics
  • Deposition
  • cluster
  • thin film
  • annealing
  • ester
  • additive manufacturing
  • atomization