Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Pakawatpanurut, Pasit

  • Google
  • 1
  • 11
  • 13

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Robust perovskite formation via vacuum thermal annealing for indoor perovskite solar cells13citations

Places of action

Chart of shared publication
Sahasithiwat, Somboon
1 / 2 shared
Sukwiboon, Thunrada
1 / 1 shared
Inna, Anuchytt
1 / 1 shared
Wongratanaphisan, Duangmanee
1 / 2 shared
Penpong, Kwanchai
1 / 1 shared
Seriwatanachai, Chaowaphat
1 / 1 shared
Ruankham, Pipat
1 / 3 shared
Kanjanaboos, Pongsakorn
1 / 6 shared
Thant, Ko Ko Shin
1 / 1 shared
Naikaew, Atittaya
1 / 1 shared
Srathongsian, Ladda
1 / 2 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Sahasithiwat, Somboon
  • Sukwiboon, Thunrada
  • Inna, Anuchytt
  • Wongratanaphisan, Duangmanee
  • Penpong, Kwanchai
  • Seriwatanachai, Chaowaphat
  • Ruankham, Pipat
  • Kanjanaboos, Pongsakorn
  • Thant, Ko Ko Shin
  • Naikaew, Atittaya
  • Srathongsian, Ladda
OrganizationsLocationPeople

article

Robust perovskite formation via vacuum thermal annealing for indoor perovskite solar cells

  • Sahasithiwat, Somboon
  • Pakawatpanurut, Pasit
  • Sukwiboon, Thunrada
  • Inna, Anuchytt
  • Wongratanaphisan, Duangmanee
  • Penpong, Kwanchai
  • Seriwatanachai, Chaowaphat
  • Ruankham, Pipat
  • Kanjanaboos, Pongsakorn
  • Thant, Ko Ko Shin
  • Naikaew, Atittaya
  • Srathongsian, Ladda
Abstract

<jats:title>Abstract</jats:title><jats:p>Perovskite materials are fascinating candidates for the next-generation solar devices. With long charge carrier lifetime, metal-halide perovskites are known to be good candidates for low-light harvesting. To match the irradiance spectra of indoor light, we configured a triple-cation perovskite material with appropriate content of bromide and chloride (FA<jats:sub>0.45</jats:sub>MA<jats:sub>0.49</jats:sub>Cs<jats:sub>0.06</jats:sub>Pb(I<jats:sub>0.62</jats:sub>Br<jats:sub>0.32</jats:sub>Cl<jats:sub>0.06</jats:sub>)<jats:sub>3</jats:sub>) to achieve an optimum band gap (E<jats:sub>g</jats:sub>) of <jats:inline-formula><jats:alternatives><jats:tex-math></jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mo>∼</mml:mo></mml:math></jats:alternatives></jats:inline-formula>1.80 eV. With low photon flux at indoor condition, minimal recombination is highly desirable. To achieve such goal, we, for the first time, combined dual usage of antisolvent deposition and vacuum thermal annealing, namely VTA, to fabricate a high-quality perovskite film. VTA leads to compact, dense, and hard morphology while suppressing trap states at surfaces and grain boundaries, which are key culprits for exciton losses. With low-cost carbon electrode architecture, VTA devices exhibited average power conversion efficiency (PCE) of 27.7 ± 2.7% with peak PCE of 32.0% (Shockley–Queisser limit of 50–60%) and average open-circuit voltage (V<jats:sub>oc</jats:sub>) of 0.93 ± 0.02 V with peak V<jats:sub>oc</jats:sub> of 0.96 V, significantly more than those of control and the vacuum treatment prior to heat.</jats:p>

Topics
  • Deposition
  • perovskite
  • impedance spectroscopy
  • morphology
  • surface
  • Carbon
  • grain
  • annealing
  • power conversion efficiency