Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Khan, Aamir Abbas

  • Google
  • 1
  • 5
  • 11

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Flow investigation of the stagnation point flow of micropolar viscoelastic fluid with modified Fourier and Fick’s law11citations

Places of action

Chart of shared publication
Alrihieli, Haifaa F.
1 / 1 shared
Khan, Muhammad Naveed
1 / 1 shared
Eldin, Sayed M.
1 / 9 shared
Elseesy, Ibrahim E.
1 / 1 shared
Aldosari, F. M.
1 / 1 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Alrihieli, Haifaa F.
  • Khan, Muhammad Naveed
  • Eldin, Sayed M.
  • Elseesy, Ibrahim E.
  • Aldosari, F. M.
OrganizationsLocationPeople

article

Flow investigation of the stagnation point flow of micropolar viscoelastic fluid with modified Fourier and Fick’s law

  • Alrihieli, Haifaa F.
  • Khan, Aamir Abbas
  • Khan, Muhammad Naveed
  • Eldin, Sayed M.
  • Elseesy, Ibrahim E.
  • Aldosari, F. M.
Abstract

<jats:title>Abstract</jats:title><jats:p>Non-Newtonian fluids are extensively employed in many different industries, such as the processing of plastics, the creation of electrical devices, lubricating flows, and the production of medical supplies. A theoretical analysis is conducted to examine the stagnation point flow of a 2nd-grade micropolar fluid into a porous material in the direction of a stretched surface under the magnetic field effect, which is stimulated by these applications. The stratification boundary conditions are imposed on the surface of the sheet. Generalized Fourier and Fick’s laws with activation energy is also considered to discuss the heat and mass transportation. To obtain the dimensionless version of the flow modeled equations, an appropriate similarity variables are used. These transfer version of equations is solved numerically by the implement of the BVP4C technique on MATLAB. The graphical and numerical results are obtained for various emerging dimensionless parameters and discussed. It is noted that by the more accurate predictions of <jats:inline-formula><jats:alternatives><jats:tex-math></jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>ε</mml:mi></mml:math></jats:alternatives></jats:inline-formula> and M, the velocity sketch is decreased due to occurrence of resistance effect. Further, it is seen that larger estimation of micropolar parameter improves the angular velocity of the fluid.</jats:p>

Topics
  • porous
  • impedance spectroscopy
  • surface
  • polymer
  • activation