Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Nair, Surabhi Suresh

  • Google
  • 2
  • 3
  • 20

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023Colossal figure of merit and compelling HER catalytic activity of holey graphyne15citations
  • 2022Theoretical Prediction and Thermal Transport Properties of Novel Monolayer TlPt<sub>2</sub>Se<sub>3</sub>5citations

Places of action

Chart of shared publication
Singh, Nirpendra
1 / 3 shared
Samad, Yarjan Abdul
1 / 4 shared
Sajjad, Muhammad
1 / 10 shared
Chart of publication period
2023
2022

Co-Authors (by relevance)

  • Singh, Nirpendra
  • Samad, Yarjan Abdul
  • Sajjad, Muhammad
OrganizationsLocationPeople

article

Colossal figure of merit and compelling HER catalytic activity of holey graphyne

  • Nair, Surabhi Suresh
  • Singh, Nirpendra
  • Samad, Yarjan Abdul
Abstract

<jats:title>Abstract</jats:title><jats:p>Herein, we have conducted a comprehensive study to uncover the thermal transport properties and hydrogen evolution reaction catalytic activity of recently synthesized holey graphyne. Our findings disclose that holey graphyne has a direct bandgap of 1.00 eV using the HSE06 exchange–correlation functional. The absence of imaginary phonon frequencies in the phonon dispersion ensures its dynamic stability. The formation energy of holey graphyne turns out to be − 8.46 eV/atom, comparable to graphene (− 9.22 eV/atom) and <jats:italic>h</jats:italic>-BN (− 8.80 eV/atom). At 300 K, the Seebeck coefficient is as high as 700 μV/K at a carrier concentration of 1 × 10<jats:sup>10</jats:sup> cm<jats:sup>-2</jats:sup>. The predicted room temperature lattice thermal conductivity (κ<jats:sub>l</jats:sub>) of 29.3 W/mK is substantially lower than graphene (3000 W/mK) and fourfold smaller than C<jats:sub>3</jats:sub>N (128 W/mK). At around 335 nm thickness, the room temperature κ<jats:sub>l</jats:sub> suppresses by 25%. The calculated <jats:italic>p</jats:italic>-type figure of merit (<jats:italic>ZT</jats:italic>) reaches a maximum of 1.50 at 300 K, higher than that of holey graphene (<jats:italic>ZT</jats:italic> = 1.13), γ-graphyne (<jats:italic>ZT</jats:italic> = 0.48), and pristine graphene (<jats:italic>ZT</jats:italic> = 0.55 × 10<jats:sup>–3</jats:sup>). It further scales up to 3.36 at 600 K. Such colossal <jats:italic>ZT</jats:italic> values make holey graphyne an appealing <jats:italic>p</jats:italic>-type thermoelectric material. Besides that, holey graphyne is a potential HER catalyst with a low overpotential of 0.20 eV, which further reduces to 0.03 eV at 2% compressive strain.</jats:p>

Topics
  • impedance spectroscopy
  • dispersion
  • Hydrogen
  • thermal conductivity