Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Dryaz, Asmaa Ragab

  • Google
  • 1
  • 8
  • 11

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Comprehensive evaluation of zeolite/marine alga nanocomposite in the removal of waste dye from industrial wastewater11citations

Places of action

Chart of shared publication
Hamd, Ahmed
1 / 2 shared
Al-Ghamdi, Azza
1 / 1 shared
Alshabanat, Mashael N.
1 / 1 shared
Al-Senani, Ghadah M.
1 / 2 shared
Soliman, N. K.
1 / 1 shared
El-Sayed, Refat
1 / 1 shared
Ahmed, Sayed A.
1 / 3 shared
Shaban, Mohamed
1 / 5 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Hamd, Ahmed
  • Al-Ghamdi, Azza
  • Alshabanat, Mashael N.
  • Al-Senani, Ghadah M.
  • Soliman, N. K.
  • El-Sayed, Refat
  • Ahmed, Sayed A.
  • Shaban, Mohamed
OrganizationsLocationPeople

article

Comprehensive evaluation of zeolite/marine alga nanocomposite in the removal of waste dye from industrial wastewater

  • Hamd, Ahmed
  • Al-Ghamdi, Azza
  • Alshabanat, Mashael N.
  • Al-Senani, Ghadah M.
  • Soliman, N. K.
  • El-Sayed, Refat
  • Ahmed, Sayed A.
  • Dryaz, Asmaa Ragab
  • Shaban, Mohamed
Abstract

<jats:title>Abstract</jats:title><jats:p>A systematic study integrating laboratory, analytical, and case study field trial was conducted to figure out the effective adsorbent that could be used for the removal of Congo red (CR) dye from industrial wastewater effluent. The ability of the zeolite (Z) to adsorb CR dye from aqueous solutions was evaluated after it was modified by the <jats:italic>Cystoseira compressa</jats:italic> algae (CC) (Egyptian marine algae). Zeolite, CC algae were combined together in order to form the new composite zeolite/algae composite (ZCC) using wet impregnation technique and then characterized by the aid of different techniques. A noticeable enhancement in the adsorption capacity of newly synthesized ZCC was observed if compared to Z and CC, particularly at low CR concentrations. The batch style experiment was selected to figure out the impact of various experimental conditions on the adsorption behavior of different adsorbents. Moreover, isotherms and kinetics were estimated. According to the experimental results, the newly synthesized ZCC composite might be applied optimistically as an adsorbent for eliminating anionic dye molecules from industrial wastewater at low dye concentration. The dye adsorption on Z and ZCC followed the Langmuir isotherm, while that of CC followed the Freundlich isotherm. The dye adsorption kinetics on ZCC, CC, and Z were agreed with Elovich, intra-particle, and pseudo-second-order kinetic models, correspondingly. Adsorption mechanisms were also assessed using Weber's intraparticle diffusion model. Finally, field tests showed that the newly synthesized sorbent has a 98.5% efficient in eliminating dyes from industrial wastewater, authorizing the foundation for a recent eco-friendly adsorbent that facilitate industrial wastewater reuse.</jats:p>

Topics
  • nanocomposite
  • experiment