Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Pitoňák, M.

  • Google
  • 1
  • 5
  • 10

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Influence of domain walls thickness, density and alignment on Barkhausen noise emission in low alloyed steels10citations

Places of action

Chart of shared publication
Životský, O.
1 / 8 shared
Minárik, P.
1 / 16 shared
Tkáč, Martin
1 / 2 shared
Neslušan, M.
1 / 2 shared
Kollár, P.
1 / 8 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Životský, O.
  • Minárik, P.
  • Tkáč, Martin
  • Neslušan, M.
  • Kollár, P.
OrganizationsLocationPeople

article

Influence of domain walls thickness, density and alignment on Barkhausen noise emission in low alloyed steels

  • Životský, O.
  • Minárik, P.
  • Tkáč, Martin
  • Neslušan, M.
  • Pitoňák, M.
  • Kollár, P.
Abstract

<jats:title>Abstract</jats:title><jats:p>This study deals with the characterization of low alloyed steels of different yield strengths (varying in the range of 235–1100 MPa) via Barkhausen noise emission. The study investigates the potential of this technique to distinguish among the low alloyed steels and all significant aspects contributing to Barkhausen noise, such as the residual stress state, microstructure expressed in terms of dislocation density, grain size, prevailing phase, as well as associated aspects of the domain wall substructure (domain wall thickness, energy, their spacing and density in the matrix). Barkhausen noise in the rolling as well as transversal direction grows along with the yield strength (up to 500 MPa) and the corresponding grain refinement of ferrite. As soon as the martensite transformation occurs in a high strength matrix, this evolution saturates, and remarkable magnetic anisotropy is developed when Barkhausen noise in the transversal direction grows at the expense of the rolling direction. The contribution of residual stresses as well as the domain wall thickness is only minor, and the evolution of Barkhausen noise is driven by the density of the domain walls and their realignment.</jats:p>

Topics
  • density
  • impedance spectroscopy
  • grain
  • grain size
  • phase
  • strength
  • steel
  • dislocation
  • yield strength