People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Aguilar, Alberto
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Nondestructive inspection of surface nanostructuring using label-free optical super-resolution imaging
Abstract
<jats:title>Abstract</jats:title><jats:p>Ultrafast laser processing can induce surface nanostructurating (SNS) in most materials with dimensions close to the irradiation laser wavelength. In-situ SNS characterization could be key for laser parameter’s fine-tuning, essential for the generation of complex and/or hybrid nanostructures. Laser Induced Periodic Surface Structures (LIPSS) created in the ultra-violet (UV) range generate the most fascinating effects. They are however highly challenging to characterize in a non-destructive manner since their dimensions can be as small as 100 nm. Conventional optical imaging methods are indeed limited by diffraction to a resolution of <jats:inline-formula><jats:alternatives><jats:tex-math> 150</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mo>≈</mml:mo><mml:mn>150</mml:mn></mml:mrow></mml:math></jats:alternatives></jats:inline-formula> nm. Although optical super-resolution techniques can go beyond the diffraction limit, which in theory allows the visualization of LIPSS, most super-resolution methods require the presence of small probes (such as fluorophores) which modifies the sample and is usually incompatible with a direct surface inspection. In this paper, we demonstrate that a modified label-free Confocal Reflectance Microscope (CRM) in a photon reassignment regime (also called re-scan microscopy) can detect sub-diffraction limit LIPSS. SNS generated on a titanium sample irradiated with a <jats:inline-formula><jats:alternatives><jats:tex-math> =257</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>λ</mml:mi><mml:mo>=</mml:mo><mml:mn>257</mml:mn></mml:mrow></mml:math></jats:alternatives></jats:inline-formula> nm femtosecond UV-laser were characterized with nanostructuring period ranging from 105 to 172 nm. Our label-free, non-destructive optical surface inspection was done at 180 <jats:inline-formula><jats:alternatives><jats:tex-math></jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>μ</mml:mi></mml:math></jats:alternatives></jats:inline-formula>m<jats:inline-formula><jats:alternatives><jats:tex-math>^2</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mrow /><mml:mn>2</mml:mn></mml:msup></mml:math></jats:alternatives></jats:inline-formula>/s, and the results are compared with commercial SEM showing the metrological efficiency of our approach.</jats:p>