Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bonetto, Jacopo

  • Google
  • 1
  • 6
  • 17

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Early exploitation of Neapolitan pozzolan (pulvis puteolana) in the Roman theatre of Aquileia, Northern Italy17citations

Places of action

Chart of shared publication
Dilaria, Simone
1 / 1 shared
Furlan, Guido
1 / 1 shared
Giovanardi, Tommaso
1 / 1 shared
Secco, Michele
1 / 5 shared
Ghiotto, Andrea R.
1 / 1 shared
Zorzi, Federico
1 / 4 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Dilaria, Simone
  • Furlan, Guido
  • Giovanardi, Tommaso
  • Secco, Michele
  • Ghiotto, Andrea R.
  • Zorzi, Federico
OrganizationsLocationPeople

article

Early exploitation of Neapolitan pozzolan (pulvis puteolana) in the Roman theatre of Aquileia, Northern Italy

  • Dilaria, Simone
  • Furlan, Guido
  • Giovanardi, Tommaso
  • Secco, Michele
  • Ghiotto, Andrea R.
  • Bonetto, Jacopo
  • Zorzi, Federico
Abstract

<jats:title>Abstract</jats:title><jats:p>The paper reports the results of the analyses on mortar-based materials from the Roman theatre of Aquileia (Friuli Venezia Giulia, Northern Italy), recently dated between the mid-1st Century BCE and the mid-1st Century CE. Samples were characterized by Polarized Light Microscopy on thin sections (PLM), Scanning Electron Microscopy with Energy Dispersive Spectroscopy (SEM–EDS) and Quantitative Phase Analysis by X-Ray Powder Diffraction (QPA-XRPD). Pyroclastic aggregates (mainly pumices and scattered tuffs), incompatible with the regional geology, were found in two samples from the preparation layers of the ground floor of the building. Their provenance was determined by means of QPA-XRPD, SEM–EDS, X-Ray Fluorescence (XRF) and Laser-Ablation Inductively-Coupled-Plasma Mass-Spectrometry (LA-ICP-MS). Mineralogical and geochemical analyses demonstrated their provenance from the Bay of Naples, thus recognizing them as <jats:italic>pulvis puteolana</jats:italic>, a type of pozzolanic aggregate outcropping around the modern town of Pozzuoli and prescribed by Vitruvius (<jats:italic>De Architectura</jats:italic>, 2.6.1) in mortar-based materials to strengthen masonries and produce hydraulic concrete for harbor piers. This evidence represents the oldest analytically-established case of <jats:italic>pulvis puteolana</jats:italic> exploitation in Northern Italy up to now, and an early use of the material out of Campania adapted for civil constructions in a non-strictly maritime-related environment. Indeed, the theatre was built in the low-lying Aquileia’s deltaic plain, prone to water infiltrations that are typical in lagoon-like environments. The data highlight the craftsmen’s resilience in adapting and reinterpreting the traditional use of the Neapolitan volcanic materials to deal with the geomorphological challenges of Aquileia’s lowland.</jats:p>

Topics
  • phase
  • scanning electron microscopy
  • Energy-dispersive X-ray spectroscopy
  • spectrometry
  • Polarized light microscopy
  • X-ray fluorescence spectroscopy
  • inductively coupled plasma mass spectrometry