Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Alimohammadi, Mohammadreza

  • Google
  • 1
  • 3
  • 47

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Falcaria vulgaris leaves extract as an eco-friendly corrosion inhibitor for mild steel in hydrochloric acid media47citations

Places of action

Chart of shared publication
A., Ahmad Ramazani S.
1 / 9 shared
Ghaderi, Mohammad
1 / 1 shared
Mahdavian, Mohammad
1 / 4 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • A., Ahmad Ramazani S.
  • Ghaderi, Mohammad
  • Mahdavian, Mohammad
OrganizationsLocationPeople

article

Falcaria vulgaris leaves extract as an eco-friendly corrosion inhibitor for mild steel in hydrochloric acid media

  • A., Ahmad Ramazani S.
  • Ghaderi, Mohammad
  • Mahdavian, Mohammad
  • Alimohammadi, Mohammadreza
Abstract

<jats:title>Abstract</jats:title><jats:p>Undoubtedly, metal corrosion is one of the most challenging problems faced by industries. Introducing corrosion inhibitors is a reasonable approach to protecting the metal surface. Due to environmental concerns and the toxicity of industrial organic corrosion inhibitors, researchers are continually exploring acceptable replacements. The current study focused on the application of Falcaria Vulgaris (FV) leaves extract to mitigate mild steel (MS) corrosion in a 1 M HCl environment. The polarization findings demonstrated that the corrosion current density decreased from 264.0 µA/cm<jats:sup>2</jats:sup> (for the sample submerged in the blank solution) to 20.4 µA/cm<jats:sup>2</jats:sup> when the optimal concentration of 800 ppm of FV leaves extract was added to the acid solution. Electrochemical impedance spectroscopy (EIS) analysis revealed an inhibition efficiency of 91.3% at this concentration after 6 h of immersion. It was determined by analyzing several adsorption isotherms that this corrosion inhibitor obeys the Frumkin isotherm. AFM, FE-SEM, and GIXRD surface analyses also supported the findings that adding FV leaves extract can reduce metal damage by adsorption on the metal surface. </jats:p>

Topics
  • density
  • surface
  • corrosion
  • atomic force microscopy
  • steel
  • mass spectrometry
  • electrochemical-induced impedance spectroscopy
  • current density
  • toxicity
  • field-emission scanning electron microscopy