Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Sayyad, Mohammed

  • Google
  • 2
  • 13
  • 39

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2024The Defects Genome of Janus Transition Metal Dichalcogenides7citations
  • 2023Improvements in 2D p-type WSe2 transistors towards ultimate CMOS scaling32citations

Places of action

Chart of shared publication
Taniguchi, Takashi
1 / 58 shared
Hautier, Geoffroy
1 / 20 shared
Kudrawiec, Robert
1 / 8 shared
Gilardoni, Carmem M.
1 / 3 shared
Watanabe, Kenji
1 / 49 shared
Atatüre, Mete
1 / 5 shared
Kopaczek, Jan
1 / 1 shared
Yang, Shize
1 / 1 shared
Chen, Weiru
1 / 1 shared
Xiong, Yihuang
1 / 1 shared
Mamun, Fahad Al
1 / 1 shared
Xie, Jing
1 / 1 shared
Patoary, Naim Hossain
1 / 1 shared
Chart of publication period
2024
2023

Co-Authors (by relevance)

  • Taniguchi, Takashi
  • Hautier, Geoffroy
  • Kudrawiec, Robert
  • Gilardoni, Carmem M.
  • Watanabe, Kenji
  • Atatüre, Mete
  • Kopaczek, Jan
  • Yang, Shize
  • Chen, Weiru
  • Xiong, Yihuang
  • Mamun, Fahad Al
  • Xie, Jing
  • Patoary, Naim Hossain
OrganizationsLocationPeople

article

Improvements in 2D p-type WSe2 transistors towards ultimate CMOS scaling

  • Mamun, Fahad Al
  • Sayyad, Mohammed
  • Xie, Jing
  • Patoary, Naim Hossain
Abstract

<jats:title>Abstract</jats:title><jats:p>This paper provides comprehensive experimental analysis relating to improvements in the two-dimensional (2D) p-type metal–oxide–semiconductor (PMOS) field effect transistors (FETs) by pure van der Waals (vdW) contacts on few-layer tungsten diselenide (WSe<jats:sub>2</jats:sub>) with high-k metal gate (HKMG) stacks. Our analysis shows that standard metallization techniques (e.g., e-beam evaporation at moderate pressure ~ 10<jats:sup>–5</jats:sup> torr) results in significant Fermi-level pinning, but Schottky barrier heights (SBH) remain small (&lt; 100 meV) when using high work function metals (e.g., Pt or Pd). Temperature-dependent analysis uncovers a more dominant contribution to contact resistance from the channel access region and confirms significant improvement through less damaging metallization techniques (i.e., reduced scattering) combined with strongly scaled HKMG stacks (enhanced carrier density). A clean contact/channel interface is achieved through high-vacuum evaporation and temperature-controlled stepped deposition providing large improvements in contact resistance. Our study reports low contact resistance of 5.7 kΩ-µm, with on-state currents of ~ 97 µA/µm and subthreshold swing of ~ 140 mV/dec in FETs with channel lengths of 400 nm. Furthermore, theoretical analysis using a Landauer transport ballistic model for WSe<jats:sub>2</jats:sub> SB-FETs elucidates the prospects of nanoscale 2D PMOS FETs indicating high-performance (excellent on-state current vs subthreshold swing benchmarks) towards the ultimate CMOS scaling limit.</jats:p>

Topics
  • Deposition
  • density
  • impedance spectroscopy
  • semiconductor
  • laser emission spectroscopy
  • two-dimensional
  • tungsten
  • evaporation
  • field-effect transistor method