Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Hayashi, Kouichi

  • Google
  • 3
  • 32
  • 59

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2023Controlling dielectric properties of Nb + X (X = Al, Ga, In) co-doped and Nb-doped rutile-type TiO<sub>2</sub> single crystals8citations
  • 2023Semiconductor–metal transition in Bi2Se3 caused by impurity doping7citations
  • 2015Spontaneous formation of suboxidic coordination around Co in ferromagnetic rutile Ti0.95Co0.05O2 film44citations

Places of action

Chart of shared publication
Taniguchi, Hiroki
1 / 7 shared
Kakimoto, Shota
1 / 1 shared
Kuwano, Taro
1 / 1 shared
Hashimoto, Yujiro
1 / 1 shared
Hagiwara, Manabu
1 / 1 shared
Deguchi, Kazuhiko
1 / 1 shared
Kimura, Koji
2 / 5 shared
Akimitsu, Jun
1 / 1 shared
Ueno, Teppei
1 / 1 shared
Fujiwara, Akihiko
1 / 3 shared
Eguchi, Ritsuko
1 / 1 shared
Hamao, Shino
1 / 1 shared
Kubozono, Yoshihiro
1 / 1 shared
Miura, Akari
1 / 1 shared
Zhi, Lei
1 / 1 shared
Ota, Hiromi
1 / 1 shared
Sugimoto, Kunihisa
1 / 7 shared
Takai, Akihisa
1 / 1 shared
Uesugi, Eri
1 / 1 shared
Matsui, Fumihiko
1 / 2 shared
Goto, Hidenori
1 / 1 shared
Uchiyama, Takaki
1 / 1 shared
Akagi, Kazuto
1 / 1 shared
Fukumura, Tomoteru
1 / 1 shared
Happo, Naohisa
1 / 1 shared
Hosokawa, Shinya
1 / 9 shared
Tsukada, Masaru
1 / 1 shared
Suzuki, Motohiro
1 / 1 shared
Hu, Wen
1 / 1 shared
Takahasi, Masamitu
1 / 2 shared
Kawasaki, Masashi
1 / 4 shared
Ohwada, Kenji
1 / 3 shared
Chart of publication period
2023
2015

Co-Authors (by relevance)

  • Taniguchi, Hiroki
  • Kakimoto, Shota
  • Kuwano, Taro
  • Hashimoto, Yujiro
  • Hagiwara, Manabu
  • Deguchi, Kazuhiko
  • Kimura, Koji
  • Akimitsu, Jun
  • Ueno, Teppei
  • Fujiwara, Akihiko
  • Eguchi, Ritsuko
  • Hamao, Shino
  • Kubozono, Yoshihiro
  • Miura, Akari
  • Zhi, Lei
  • Ota, Hiromi
  • Sugimoto, Kunihisa
  • Takai, Akihisa
  • Uesugi, Eri
  • Matsui, Fumihiko
  • Goto, Hidenori
  • Uchiyama, Takaki
  • Akagi, Kazuto
  • Fukumura, Tomoteru
  • Happo, Naohisa
  • Hosokawa, Shinya
  • Tsukada, Masaru
  • Suzuki, Motohiro
  • Hu, Wen
  • Takahasi, Masamitu
  • Kawasaki, Masashi
  • Ohwada, Kenji
OrganizationsLocationPeople

article

Semiconductor–metal transition in Bi2Se3 caused by impurity doping

  • Akimitsu, Jun
  • Ueno, Teppei
  • Fujiwara, Akihiko
  • Eguchi, Ritsuko
  • Hamao, Shino
  • Kubozono, Yoshihiro
  • Miura, Akari
  • Zhi, Lei
  • Ota, Hiromi
  • Sugimoto, Kunihisa
  • Takai, Akihisa
  • Uesugi, Eri
  • Hayashi, Kouichi
  • Matsui, Fumihiko
  • Goto, Hidenori
  • Kimura, Koji
  • Uchiyama, Takaki
Abstract

<jats:title>Abstract</jats:title><jats:p>Doping a typical topological insulator, Bi<jats:sub>2</jats:sub>Se<jats:sub>3</jats:sub>, with Ag impurity causes a semiconductor–metal (S-M) transition at 35 K. To deepen the understanding of this phenomenon, structural and transport properties of Ag-doped Bi<jats:sub>2</jats:sub>Se<jats:sub>3</jats:sub> were studied. Single-crystal X-ray diffraction (SC-XRD) showed no structural transitions but slight shrinkage of the lattice, indicating no structural origin of the transition. To better understand electronic properties of Ag-doped Bi<jats:sub>2</jats:sub>Se<jats:sub>3</jats:sub>, extended analyses of Hall effect and electric-field effect were carried out. Hall effect measurements revealed that the reduction of resistance was accompanied by increases in not only carrier density but carrier mobility. The field-effect mobility is different for positive and negative gate voltages, indicating that the <jats:italic>E</jats:italic><jats:sub>F</jats:sub> is located at around the bottom of the bulk conduction band (BCB) and that the carrier mobility in the bulk is larger than that at the bottom surface at all temperatures. The pinning of the <jats:italic>E</jats:italic><jats:sub>F</jats:sub> at the BCB is found to be a key issue to induce the S-M transition, because the transition can be caused by depinning of the <jats:italic>E</jats:italic><jats:sub>F</jats:sub> or the crossover between the bulk and the top surface transport.</jats:p>

Topics
  • density
  • impedance spectroscopy
  • surface
  • single crystal X-ray diffraction
  • mobility
  • semiconductor