Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Tavadze, Pedram

  • Google
  • 1
  • 3
  • 17

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Vickers hardness prediction from machine learning methods17citations

Places of action

Chart of shared publication
Romero, Aldo H.
1 / 5 shared
Bautista-Hernandez, Alejandro
1 / 1 shared
Lang, Logan
1 / 2 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Romero, Aldo H.
  • Bautista-Hernandez, Alejandro
  • Lang, Logan
OrganizationsLocationPeople

article

Vickers hardness prediction from machine learning methods

  • Romero, Aldo H.
  • Bautista-Hernandez, Alejandro
  • Lang, Logan
  • Tavadze, Pedram
Abstract

<jats:title>Abstract</jats:title><jats:p>The search for new superhard materials is of great interest for extreme industrial applications. However, the theoretical prediction of hardness is still a challenge for the scientific community, given the difficulty of modeling plastic behavior of solids. Different hardness models have been proposed over the years. Still, they are either too complicated to use, inaccurate when extrapolating to a wide variety of solids or require coding knowledge. In this investigation, we built a successful machine learning model that implements Gradient Boosting Regressor (GBR) to predict hardness and uses the mechanical properties of a solid (bulk modulus, shear modulus, Young’s modulus, and Poisson’s ratio) as input variables. The model was trained with an experimental Vickers hardness database of 143 materials, assuring various kinds of compounds. The input properties were calculated from the theoretical elastic tensor. The Materials Project’s database was explored to search for new superhard materials, and our results are in good agreement with the experimental data available. Other alternative models to compute hardness from mechanical properties are also discussed in this work. Our results are available in a free-access easy to use online application to be further used in future studies of new materials at <jats:ext-link xmlns:xlink="http://www.w3.org/1999/xlink" ext-link-type="uri" xlink:href="http://www.hardnesscalculator.com">www.hardnesscalculator.com</jats:ext-link>.</jats:p>

Topics
  • impedance spectroscopy
  • compound
  • polymer
  • hardness
  • machine learning
  • bulk modulus