Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Adedoyin, K. J.

  • Google
  • 1
  • 6
  • 19

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Optimization of the mechanical properties of polyester/coconut shell ash (CSA) composite for light-weight engineering applications19citations

Places of action

Chart of shared publication
Jen, T. C.
1 / 17 shared
Adewuyi, B. O.
1 / 1 shared
Daramola, O. O.
1 / 2 shared
Balogun, O. A.
1 / 1 shared
Adediran, A. A.
1 / 6 shared
Olajide, J. L.
1 / 1 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Jen, T. C.
  • Adewuyi, B. O.
  • Daramola, O. O.
  • Balogun, O. A.
  • Adediran, A. A.
  • Olajide, J. L.
OrganizationsLocationPeople

article

Optimization of the mechanical properties of polyester/coconut shell ash (CSA) composite for light-weight engineering applications

  • Jen, T. C.
  • Adedoyin, K. J.
  • Adewuyi, B. O.
  • Daramola, O. O.
  • Balogun, O. A.
  • Adediran, A. A.
  • Olajide, J. L.
Abstract

<jats:title>Abstract</jats:title><jats:p>The mechanical properties of coconut shell ash (CSA) reinforced polyester composite have been optimized. Various test specimens were developed by dispersing 10, 20, 30 and 40 wt.%, of CSA in unsaturated polyester resin in decreasing particle sizes of 40, 30, and 20 µm in an open mould using hand lay-up technique. Tensile, flexural, and impact strengths, as well as tensile and flexural moduli and Shore D hardness of all test samples were determined. The results showed that 10–20 wt.% CSA increased tensile, flexural, impact strengths and flexural modulus for all particle sizes, but 30–40 wt. % CSA engendered depreciation in corresponding performance. For all particle sizes, 10–40 wt. percent CSA resulted in an increase in tensile strength, whereas 10–40 wt. percent resulted into a linear increase in Shore D hardness. Further observation portrayed that in each case, the finest CSA (20 µm) have the optimum result. Statistical analysis carried out on experimental outcomes confirmed the experimental variables (particle proportion and sizes) to be significant. From the surface plot, the strength responses revealed more dependence on the individual variables than their interactions. Regression models developed for individual responses are termed statistically fit in representing the experimental data.</jats:p>

Topics
  • surface
  • strength
  • composite
  • hardness
  • tensile strength
  • resin