Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

El-Gawaad, N. S. Abd

  • Google
  • 1
  • 4
  • 4

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Performance analysis of the salinity based on hexagonal two-dimensional photonic crystal: computational study4citations

Places of action

Chart of shared publication
Ismail, Mohamed A.
1 / 8 shared
Sayed, Hassan
1 / 1 shared
Al-Dossari, M.
1 / 2 shared
Aly, Arafa H.
1 / 5 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Ismail, Mohamed A.
  • Sayed, Hassan
  • Al-Dossari, M.
  • Aly, Arafa H.
OrganizationsLocationPeople

article

Performance analysis of the salinity based on hexagonal two-dimensional photonic crystal: computational study

  • El-Gawaad, N. S. Abd
  • Ismail, Mohamed A.
  • Sayed, Hassan
  • Al-Dossari, M.
  • Aly, Arafa H.
Abstract

<jats:title>Abstract</jats:title><jats:p>We have designed a unique structure for a liquid sensor based on two-dimensional PCs with a triangular lattice constant in the periodicity by drilling a hexagonal cylinder in a dielectric host material. Using the COMSOL multiphysics approach, we investigated the given structure and sensing performance based on the finite element method. We will optimize two-dimensional hexagonal photonic crystals to localize the photonic band gap region in the mid and far infra-red frequency range, as water is a good absorber for this range of frequencies. Then, we inject the central hexagonal cylinder with saline water and calculate the sensor parameters for different values of the refractive index of saline water at different frequencies related to photonic band gaps. We could reach the optimum conditions of the salinity sensor as the half diagonal of the hexagonal shape (R) = 500 nm, the perpendicular distance between the two diagonal hexagonal (D) = 250 nm, and the number of periods (N) = 5, which gives a high efficiency with sensitivity (S) = 525 nm/RIU, figure of merit (FOM) = 80.7 RIU<jats:sup>−1</jats:sup>, and quality factor (Q) = 375. The effects of structural characteristics on sensing performance are investigated, with new approaches for improving salinity sensors proposed<jats:bold>.</jats:bold> Furthermore, traditional salinity sensors may be replaced by the proposed method in the photo-sensing application, which is simple and practical for use in the thermal desalination techniques.</jats:p>

Topics
  • impedance spectroscopy
  • two-dimensional