Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Digregorio, Steven J.

  • Google
  • 1
  • 4
  • 8

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022All-atmospheric fabrication of Ag–Cu core–shell nanowire transparent electrodes with Haacke figure of merit >600 × 10–3 Ω−18citations

Places of action

Chart of shared publication
Hildreth, Owen J.
1 / 1 shared
Wheeler, Lance M.
1 / 3 shared
Prince, Kevin J.
1 / 2 shared
Miller, Collin E.
1 / 1 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Hildreth, Owen J.
  • Wheeler, Lance M.
  • Prince, Kevin J.
  • Miller, Collin E.
OrganizationsLocationPeople

article

All-atmospheric fabrication of Ag–Cu core–shell nanowire transparent electrodes with Haacke figure of merit >600 × 10–3 Ω−1

  • Hildreth, Owen J.
  • Wheeler, Lance M.
  • Prince, Kevin J.
  • Miller, Collin E.
  • Digregorio, Steven J.
Abstract

<jats:title>Abstract</jats:title><jats:p>Transparent conducting electrodes (TCEs) are essential components in devices such as touch screens, smart windows, and photovoltaics. Metal nanowire networks are promising next-generation TCEs, but best-performing examples rely on expensive metal catalysts (palladium or platinum), vacuum processing, or transfer processes that cannot be scaled. This work demonstrates a metal nanowire TCE fabrication process that focuses on high performance and simple fabrication. Here we combined direct and plating metallization processes on electrospun nanowires. We first directly metallize silver nanowires using reactive silver ink. The silver catalyzes subsequent copper plating to produce Ag–Cu core–shell nanowires and eliminates nanowire junction resistances. The process allows for tunable transmission and sheet resistance properties by adjusting electrospinning and plating time. We demonstrate state-of-the-art, low-haze TCEs using an all-atmospheric process with sheet resistances of 0.33 Ω sq<jats:sup>−1</jats:sup> and visible light transmittances of 86% (including the substrate), leading to a Haacke figure of merit of 652 × 10<jats:sup>–3</jats:sup> Ω<jats:sup>−1</jats:sup>. The core–shell nanowire electrode also demonstrates high chemical and bending durability. </jats:p>

Topics
  • silver
  • Platinum
  • reactive
  • copper
  • durability
  • electrospinning
  • palladium