Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Verseils, M.

  • Google
  • 1
  • 6
  • 5

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Broadband infrared study of pressure-tunable Fano resonance and metallization transition in 2H-$$hbox {MoTe}_2$$5citations

Places of action

Chart of shared publication
Petrillo, C.
1 / 2 shared
Dore, P.
1 / 8 shared
Stellino, Elena
1 / 1 shared
Ripanti, F.
1 / 1 shared
Capitani, F.
1 / 2 shared
Postorino, P.
1 / 14 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Petrillo, C.
  • Dore, P.
  • Stellino, Elena
  • Ripanti, F.
  • Capitani, F.
  • Postorino, P.
OrganizationsLocationPeople

article

Broadband infrared study of pressure-tunable Fano resonance and metallization transition in 2H-$$hbox {MoTe}_2$$

  • Petrillo, C.
  • Verseils, M.
  • Dore, P.
  • Stellino, Elena
  • Ripanti, F.
  • Capitani, F.
  • Postorino, P.
Abstract

<jats:title>Abstract</jats:title><jats:p>High pressure is a proven effective tool for modulating inter-layer interactions in semiconducting transition metal dichalcogenides, which leads to significant band structure changes. Here, we present an extended infrared study of the pressure-induced semiconductor-to-metal transition in 2H-<jats:inline-formula><jats:alternatives><jats:tex-math> {MoTe}_2</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mtext>MoTe</mml:mtext><mml:mn>2</mml:mn></mml:msub></mml:math></jats:alternatives></jats:inline-formula>, which reveals that the metallization process at 13–15 GPa is not associated with the indirect band-gap closure, occurring at 24 GPa. A coherent picture is drawn where n-type doping levels just below the conduction band minimum play a crucial role in the early metallization transition. Doping levels are also responsible for the asymmetric Fano line-shape of the <jats:inline-formula><jats:alternatives><jats:tex-math> {E}_{1u}</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mtext>E</mml:mtext><mml:mrow><mml:mn>1</mml:mn><mml:mi>u</mml:mi></mml:mrow></mml:msub></mml:math></jats:alternatives></jats:inline-formula> infrared-active mode, which has been here detected and analyzed for the first time in a transition metal dichalcogenide compound. The pressure evolution of the phonon profile under pressure shows a symmetrization in the 13–15 GPa pressure range, which occurs simultaneously with the metallization and confirms the scenario proposed for the high pressure behaviour of 2H-<jats:inline-formula><jats:alternatives><jats:tex-math> {MoTe}_2</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mtext>MoTe</mml:mtext><mml:mn>2</mml:mn></mml:msub></mml:math></jats:alternatives></jats:inline-formula>.</jats:p>

Topics
  • impedance spectroscopy
  • compound
  • semiconductor
  • band structure