Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ito, Yuri

  • Google
  • 1
  • 9
  • 3

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022A pressure driven electric energy generator exploiting a micro- to nano-scale glass porous filter with ion flow originating from water3citations

Places of action

Chart of shared publication
Funano, Shun-Ichi
1 / 1 shared
Sugawa, Hisashi
1 / 1 shared
Yalikun, Yaxiaer
1 / 4 shared
Amaya, Satoshi
1 / 1 shared
Aishan, Yusufu
1 / 1 shared
Tanaka, Yo
1 / 3 shared
Liu, Xun
1 / 1 shared
Nagafuchi, Wataru
1 / 1 shared
Kamamichi, Norihiro
1 / 1 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Funano, Shun-Ichi
  • Sugawa, Hisashi
  • Yalikun, Yaxiaer
  • Amaya, Satoshi
  • Aishan, Yusufu
  • Tanaka, Yo
  • Liu, Xun
  • Nagafuchi, Wataru
  • Kamamichi, Norihiro
OrganizationsLocationPeople

article

A pressure driven electric energy generator exploiting a micro- to nano-scale glass porous filter with ion flow originating from water

  • Funano, Shun-Ichi
  • Sugawa, Hisashi
  • Yalikun, Yaxiaer
  • Amaya, Satoshi
  • Aishan, Yusufu
  • Tanaka, Yo
  • Liu, Xun
  • Nagafuchi, Wataru
  • Ito, Yuri
  • Kamamichi, Norihiro
Abstract

<jats:title>Abstract</jats:title><jats:p>We demonstrated a pressure driven energy harvesting device using water and that features a glass filter with porous channels. We employed powder sintering to fabricate the glass filter (2 cm diameter, 3 mm thickness) by packing a powder of borosilicate glass particles into a carbon mold and then thermally fusing this at 700°C under pressure. In constant flow rate experiment, the optimum average pore radius of the filter for power generation was 12 μm. Using this filter, power of 3.8 mW (27 V, 0.14 mA, 0.021% energy efficiency) was generated at a water flow speed of 50 mm/s. In constant pressure experiment, a power generator was equipped with a foot press unit with a 60 kg weight (830 kPa) and 50 mL of water. The optimum average pore radius for power generation in this experiment was 12 μm and power of 4.8 mW (18 V, 0.26 mA, 0.017% energy efficiency) was generated with 1.7 s duration. This was enough power for direct LED lighting and the capacitors could store enough energy to rotate a fan and operate a wireless communicator. Our pressure driven device is suitable for energy harvesting from slow movements like certain human physiological functions, e.g. walking.</jats:p>

Topics
  • porous
  • impedance spectroscopy
  • pore
  • Carbon
  • experiment
  • glass
  • glass
  • sintering