Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ismail, M. A.

  • Google
  • 1
  • 2
  • 43

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Experimental and computational chemical studies on the corrosion inhibition of new pyrimidinone derivatives for copper in nitric acid43citations

Places of action

Chart of shared publication
El-Hossiany, Ahmed
1 / 2 shared
Khaled, M. A.
1 / 3 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • El-Hossiany, Ahmed
  • Khaled, M. A.
OrganizationsLocationPeople

article

Experimental and computational chemical studies on the corrosion inhibition of new pyrimidinone derivatives for copper in nitric acid

  • Ismail, M. A.
  • El-Hossiany, Ahmed
  • Khaled, M. A.
Abstract

<jats:title>Abstract</jats:title><jats:p>Inhibition of copper corrosion by some pyrimidinone derivatives, namely; (E)-<jats:italic>N</jats:italic>-(3-((1,3-dimethyl-2,4,6-trioxohexahydropyrimidin-5-yl)diazenyl)-2,5-diethoxyphenyl)benzamide (MA-975) and(E)-6-(4-((4-chlorophenyl)diazenyl)-3-methyl-5-oxo-4,5-dihydro-1<jats:italic>H</jats:italic>-pyrazol-1-yl)-1,3 dimethylpyrimidine-2,4(1<jats:italic>H</jats:italic>,3<jats:italic>H</jats:italic>)-dione (MA-978C) in 1.0 M nitric acid (HNO<jats:sub>3</jats:sub>) was studied using weight loss (WL), electrochemical impedance spectroscopy (EIS), and potentiodynamic polarization (PP) measurements. The efficiency of inhibition increases as the concentration of inhibitor increases, and it also increases as the temperature increases. With the addition of the examined inhibitors, significant corrosion protection was obtained, and (MA-975) showed a very promising % IE (89.59%) at 21 × 10<jats:sup>−6</jats:sup> M using the (WL) method. The polarization data revealed that these compounds act as mixed-type compounds and are adsorbed on the copper surface following Langmuir adsorption isotherm forming a protective thin film protecting the metal in the corrosive media. Scanning electron microscopy (SEM) and Energy Dispersive X-ray were used to examine the surface morphology of copper samples. Quantum calculations and Monte Carlo simulation techniques were applied with informative yields and the results matched the experimental findings.</jats:p>

Topics
  • surface
  • compound
  • corrosion
  • scanning electron microscopy
  • thin film
  • simulation
  • copper
  • forming
  • electrochemical-induced impedance spectroscopy