Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Hadi, Mohammad A.

  • Google
  • 1
  • 4
  • 36

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022DFT insights into the electronic structure, mechanical behaviour, lattice dynamics and defect processes in the first Sc-based MAX phase Sc2SnC36citations

Places of action

Chart of shared publication
Christopoulos, Stavros-Richard G.
1 / 11 shared
Chroneos, Alexander
1 / 13 shared
Islam, A. K. M. A.
1 / 11 shared
Naqib, S. H.
1 / 9 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Christopoulos, Stavros-Richard G.
  • Chroneos, Alexander
  • Islam, A. K. M. A.
  • Naqib, S. H.
OrganizationsLocationPeople

article

DFT insights into the electronic structure, mechanical behaviour, lattice dynamics and defect processes in the first Sc-based MAX phase Sc2SnC

  • Christopoulos, Stavros-Richard G.
  • Chroneos, Alexander
  • Hadi, Mohammad A.
  • Islam, A. K. M. A.
  • Naqib, S. H.
Abstract

Here we employed the density functional theory calculations to investigate some physical properties of first Sc-based MAX phase Sc2SnC including defect processes to compare with those of existing M2SnC phases. The calculated structural properties are in good agreement with the experimental values. The new phase Sc2SnC is structurally, mechanically and dynamically stable. Sc2SnC is metallic with a mixture of covalent and ionic character. The covalency of Sc2SnC including M2SnC is mostly controlled by the effective valence. Sc2SnC in M2SnC family ranks second in the scale of deformability and softness. The elastic anisotropy level in Sc2SnC is moderate compared to the other M2SnC phases. The hardness and melting point of Sc2SnC, including M2SnC, follows the trend of bulk modulus. Like other members of the M2SnC family, Sc2SnC has the potential to be etched into 2D MXenes and has the potential to be a thermal barrier coating material.

Topics
  • density
  • impedance spectroscopy
  • phase
  • theory
  • hardness
  • defect
  • density functional theory
  • bulk modulus