Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Nozawa, K.

  • Google
  • 2
  • 13
  • 43

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2022Si1–xGex anode synthesis on plastic films for flexible rechargeable batteries6citations
  • 2013Templated three-dimensional growth of quasicrystalline lead37citations

Places of action

Chart of shared publication
Suemasu, T.
1 / 4 shared
Kado, Y.
1 / 1 shared
Toko, K.
1 / 1 shared
Suzuki, T.
1 / 19 shared
Nugent, Peter
1 / 1 shared
Mcgrath, R.
1 / 7 shared
Sharma, H. R.
1 / 4 shared
Smerdon, J. A.
1 / 1 shared
Shimoda, M.
1 / 3 shared
Ishii, Y.
1 / 3 shared
Dhanak, V. R.
1 / 7 shared
Mcleod, I.
1 / 2 shared
Tsai, A. P.
1 / 5 shared
Chart of publication period
2022
2013

Co-Authors (by relevance)

  • Suemasu, T.
  • Kado, Y.
  • Toko, K.
  • Suzuki, T.
  • Nugent, Peter
  • Mcgrath, R.
  • Sharma, H. R.
  • Smerdon, J. A.
  • Shimoda, M.
  • Ishii, Y.
  • Dhanak, V. R.
  • Mcleod, I.
  • Tsai, A. P.
OrganizationsLocationPeople

article

Si1–xGex anode synthesis on plastic films for flexible rechargeable batteries

  • Suemasu, T.
  • Nozawa, K.
  • Kado, Y.
  • Toko, K.
  • Suzuki, T.
Abstract

<jats:title>Abstract</jats:title><jats:p>SiGe is a promising anode material for replacing graphite in next generation thin-film batteries owing to its high theoretical charge/discharge capacity. Metal-induced layer exchange (LE) is a unique technique used for the low-temperature synthesis of SiGe layers on arbitrary substrates. Here, we demonstrate the synthesis of Si<jats:sub>1−<jats:italic>x</jats:italic></jats:sub>Ge<jats:sub><jats:italic>x</jats:italic></jats:sub> (<jats:italic>x</jats:italic> = 0–1) layers on plastic films using Al-induced LE. The resulting SiGe layers exhibited high electrical conductivity (up to 1200 S cm<jats:sup>−1</jats:sup>), reflecting the self-organized doping effect of LE. Moreover, the Si<jats:sub>1−<jats:italic>x</jats:italic></jats:sub>Ge<jats:sub><jats:italic>x</jats:italic></jats:sub> layer synthesized by the same process was adopted as the anode for the lithium-ion battery. All Si<jats:sub>1−<jats:italic>x</jats:italic></jats:sub>Ge<jats:sub><jats:italic>x</jats:italic></jats:sub> anodes showed clear charge/discharge operation and high coulombic efficiency (≥ 97%) after 100 cycles. While the discharge capacities almost reflected the theoretical values at each <jats:italic>x</jats:italic> at 0.1 C, the capacity degradation with increasing current rate strongly depended on <jats:italic>x</jats:italic>. Si-rich samples exhibited high initial capacity and low capacity retention, while Ge-rich samples showed contrasting characteristics. In particular, the Si<jats:sub>1−<jats:italic>x</jats:italic></jats:sub>Ge<jats:sub><jats:italic>x</jats:italic></jats:sub> layers with <jats:italic>x</jats:italic> ≥ 0.8 showed excellent current rate performance owing to their high electrical conductivity and low volume expansion, maintaining a high capacity (&gt; 500 mAh g<jats:sup>–1</jats:sup>) even at a high current rate (10 C). Thus, we revealed the relationship between SiGe composition and anode characteristics for the SiGe layers formed by LE at low temperatures. These results will pave the way for the next generation of flexible batteries based on SiGe anodes.</jats:p>

Topics
  • impedance spectroscopy
  • polymer
  • Lithium
  • electrical conductivity